issue_comments
1 row where author_association = "NONE" and issue = 415774106 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Add "unique()" method, mimicking pandas · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 709991825 | https://github.com/pydata/xarray/issues/2795#issuecomment-709991825 | https://api.github.com/repos/pydata/xarray/issues/2795 | MDEyOklzc3VlQ29tbWVudDcwOTk5MTgyNQ== | kripnerl 38673295 | 2020-10-16T11:34:05Z | 2020-10-16T11:34:05Z | NONE | Hi, I also vote for this function, My typical use-case. There is some structure in 3D space and I need to "flatten it" to 2D. Let us say it is axially symetric so I assign R and Z coordinate to points (or r and theta in polar). And I want to simplify this using I have some solution here: https://stackoverflow.com/questions/51058379/drop-duplicate-times-in-xarray and adapted this into actuall function: ```python def distribure_uniform(ds, N_points=512):
``` In an idal case I would like to write something like this: ```python def distribure_uniform(ds, N_points=512):
``` |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Add "unique()" method, mimicking pandas 415774106 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1