home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

7 rows where author_association = "NONE" and issue = 261727170 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 3

  • nicain 4
  • chrisbarber 2
  • stale[bot] 1

issue 1

  • DataArray to_dict() without converting with numpy tolist() · 7 ✖

author_association 1

  • NONE · 7 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
527253115 https://github.com/pydata/xarray/issues/1599#issuecomment-527253115 https://api.github.com/repos/pydata/xarray/issues/1599 MDEyOklzc3VlQ29tbWVudDUyNzI1MzExNQ== stale[bot] 26384082 2019-09-02T22:39:29Z 2019-09-02T22:39:29Z NONE

In order to maintain a list of currently relevant issues, we mark issues as stale after a period of inactivity

If this issue remains relevant, please comment here or remove the stale label; otherwise it will be marked as closed automatically

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  DataArray to_dict() without converting with numpy tolist() 261727170
333672308 https://github.com/pydata/xarray/issues/1599#issuecomment-333672308 https://api.github.com/repos/pydata/xarray/issues/1599 MDEyOklzc3VlQ29tbWVudDMzMzY3MjMwOA== nicain 113055 2017-10-02T21:35:50Z 2017-10-02T21:39:49Z NONE

Sweet, this is exactly what I am used to! Ill give a shot to writing a few tests later today, and make a PR. Can you suggest some core devs I can ping for a PR review? Ill ask @chrisbarber (we work together) to review, but I'd like more eyeballs on it.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  DataArray to_dict() without converting with numpy tolist() 261727170
333636786 https://github.com/pydata/xarray/issues/1599#issuecomment-333636786 https://api.github.com/repos/pydata/xarray/issues/1599 MDEyOklzc3VlQ29tbWVudDMzMzYzNjc4Ng== nicain 113055 2017-10-02T19:18:58Z 2017-10-02T19:18:58Z NONE

@chrisbarber

Here is my example implementation: https://github.com/nicain/xarray/blob/fa86e3d38ebf4e641cafd963a5b69a77539b931d/xarray/core/dataarray.py#L1388

@shoyer Can you point me to where to edit documentation and unit test best practices?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  DataArray to_dict() without converting with numpy tolist() 261727170
333247131 https://github.com/pydata/xarray/issues/1599#issuecomment-333247131 https://api.github.com/repos/pydata/xarray/issues/1599 MDEyOklzc3VlQ29tbWVudDMzMzI0NzEzMQ== chrisbarber 1530840 2017-09-29T21:48:58Z 2017-09-29T21:48:58Z NONE

@nicain, for sure. Probably best for the API's sake to stick to the simplicity of a flag.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  DataArray to_dict() without converting with numpy tolist() 261727170
333243054 https://github.com/pydata/xarray/issues/1599#issuecomment-333243054 https://api.github.com/repos/pydata/xarray/issues/1599 MDEyOklzc3VlQ29tbWVudDMzMzI0MzA1NA== nicain 113055 2017-09-29T21:26:17Z 2017-09-29T21:26:17Z NONE

@chrisbarber Maybe a method to_byte_dict that (in implementation) takes the output from numpy=True and walks the dict with tobytes?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  DataArray to_dict() without converting with numpy tolist() 261727170
333240395 https://github.com/pydata/xarray/issues/1599#issuecomment-333240395 https://api.github.com/repos/pydata/xarray/issues/1599 MDEyOklzc3VlQ29tbWVudDMzMzI0MDM5NQ== chrisbarber 1530840 2017-09-29T21:12:15Z 2017-09-29T21:12:15Z NONE

Could have a callable serializer kwarg that defaults to np.ndarray.tolist. I have a use case where I would pass in np.ndarray.tobytes for this. But then again, I could just use numpy=True or tolist=False and then walk the dict myself.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  DataArray to_dict() without converting with numpy tolist() 261727170
333211787 https://github.com/pydata/xarray/issues/1599#issuecomment-333211787 https://api.github.com/repos/pydata/xarray/issues/1599 MDEyOklzc3VlQ29tbWVudDMzMzIxMTc4Nw== nicain 113055 2017-09-29T19:04:24Z 2017-09-29T19:04:24Z NONE

Yeah, my thoughts exactly. I am almost done with this in my fork... numpy might be confusing for those who will see the module name when they look at it. How does a kwarg:

Python def to_dict(self, tolist=True):

sound?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  DataArray to_dict() without converting with numpy tolist() 261727170

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 13.897ms · About: xarray-datasette