issue_comments
6 rows where author_association = "MEMBER", issue = 842940980 and user = 5635139 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: reactions, created_at (date), updated_at (date)
issue 1
- Add drop duplicates · 6 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
830237579 | https://github.com/pydata/xarray/pull/5089#issuecomment-830237579 | https://api.github.com/repos/pydata/xarray/issues/5089 | MDEyOklzc3VlQ29tbWVudDgzMDIzNzU3OQ== | max-sixty 5635139 | 2021-04-30T17:12:02Z | 2021-04-30T17:12:02Z | MEMBER | This is great work and it would be good to get this in for the upcoming release https://github.com/pydata/xarray/issues/5232. I think there are two paths: 1. Narrow: merge the functionality which works along 1D dimensioned coords 2. Full: Ensure we're at consensus on how we handle >1D coords I would mildly vote for narrow. While I would also vote to merge it as-is, I think it's not a huge task to move wide onto a new branch. @ahuang11 what are your thoughts? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add drop duplicates 842940980 | |
822098673 | https://github.com/pydata/xarray/pull/5089#issuecomment-822098673 | https://api.github.com/repos/pydata/xarray/issues/5089 | MDEyOklzc3VlQ29tbWVudDgyMjA5ODY3Mw== | max-sixty 5635139 | 2021-04-19T00:41:47Z | 2021-04-19T00:41:47Z | MEMBER |
IIUC there are two broad cases here - where every supplied coord is a dimensioned coord — it's v simple, just isel non-duplicates for each dimension* - where there's a non-dimensioned coord with ndim > 1, then it requires stacking; e.g. the example above. Is there a different way of doing this? ```python In [12]: da Out[12]: <xarray.DataArray (init: 2, tau: 3)> array([[1, 2, 3], [4, 5, 6]]) Coordinates: * init (init) int64 0 1 * tau (tau) int64 1 2 3 valid (init, tau) int64 8 6 6 7 7 7 In [13]: da.drop_duplicate_coords("valid") Out[13]: <xarray.DataArray (valid: 3)> array([1, 2, 4]) Coordinates: * valid (valid) int64 8 6 7 init (valid) int64 0 0 1 tau (valid) int64 1 2 1 ``` * very close to this is a 1D non-dimensioned coord, in which case we can either turn it into a dimensioned coord or retain the existing dimensioned coords — I think probably the former if we allow the stacking case, for the sake of consistency. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add drop duplicates 842940980 | |
822089198 | https://github.com/pydata/xarray/pull/5089#issuecomment-822089198 | https://api.github.com/repos/pydata/xarray/issues/5089 | MDEyOklzc3VlQ29tbWVudDgyMjA4OTE5OA== | max-sixty 5635139 | 2021-04-18T23:57:20Z | 2021-04-18T23:57:20Z | MEMBER | @ahuang11 IIUC, this is only using I agree with @shoyer that we could do it in a single |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add drop duplicates 842940980 | |
821902582 | https://github.com/pydata/xarray/pull/5089#issuecomment-821902582 | https://api.github.com/repos/pydata/xarray/issues/5089 | MDEyOklzc3VlQ29tbWVudDgyMTkwMjU4Mg== | max-sixty 5635139 | 2021-04-17T23:37:07Z | 2021-04-17T23:37:07Z | MEMBER | Hi @ahuang11 — forgive the delay. We discussed this with the team on our call and think it would be a welcome addition, so thank you for contributing. I took another look through the tests and the behavior looks ideal for dimensioned coords are passed: ```python In [6]: da Out[6]: <xarray.DataArray (lat: 5, lon: 5)> array([[ 0, 0, 0, 0, 0], [ 0, 1, 2, 3, 4], [ 0, 2, 4, 6, 8], [ 0, 3, 6, 9, 12], [ 0, 4, 8, 12, 16]]) Coordinates: * lat (lat) int64 0 1 2 2 3 * lon (lon) int64 0 1 3 3 4 In [7]: result = da.drop_duplicate_coords(["lat", "lon"], keep='first') In [8]: result Out[8]: <xarray.DataArray (lat: 4, lon: 4)> array([[ 0, 0, 0, 0], [ 0, 1, 2, 4], [ 0, 2, 4, 8], [ 0, 4, 8, 16]]) Coordinates: * lat (lat) int64 0 1 2 3 * lon (lon) int64 0 1 3 4 ``` And I think this is also the best we can do for non-dimensioned coords. One thing I call out is that: a. The array is stacked for any non-dim coord > 1 dim b. The supplied coord becomes the new dimensioned coord e.g. Stacking: ```python In [12]: da Out[12]: <xarray.DataArray (init: 2, tau: 3)> array([[1, 2, 3], [4, 5, 6]]) Coordinates: * init (init) int64 0 1 * tau (tau) int64 1 2 3 valid (init, tau) int64 8 6 6 7 7 7 In [13]: da.drop_duplicate_coords("valid") Out[13]: <xarray.DataArray (valid: 3)> array([1, 2, 4]) Coordinates: * valid (valid) int64 8 6 7 init (valid) int64 0 0 1 tau (valid) int64 1 2 1 ``` Changing the dimensions: ```python In [16]: ( ...: da ...: .assign_coords(dict(zeta=(('tau'),[4,4,6]))) ...: .drop_duplicate_coords('zeta') ...: ) Out[16]: <xarray.DataArray (init: 2, zeta: 2)> array([[1, 3], [4, 6]]) Coordinates: * init (init) int64 0 1 valid (init, zeta) int64 8 6 7 7 * zeta (zeta) int64 4 6 tau (zeta) int64 1 3 ``` One peculiarity — though I think a necessary one — is that the order matters in some cases: ```python In [17]: ( ...: da ...: .assign_coords(dict(zeta=(('tau'),[4,4,6]))) ...: .drop_duplicate_coords(['zeta','valid']) ...: ) Out[17]: <xarray.DataArray (valid: 3)> array([1, 3, 4]) Coordinates: * valid (valid) int64 8 6 7 tau (valid) int64 1 3 1 init (valid) int64 0 0 1 zeta (valid) int64 4 6 4 In [18]: ( ...: da ...: .assign_coords(dict(zeta=(('tau'),[4,4,6]))) ...: .drop_duplicate_coords(['valid','zeta']) ...: ) Out[18]: <xarray.DataArray (zeta: 1)> array([1]) Coordinates: * zeta (zeta) int64 4 init (zeta) int64 0 tau (zeta) int64 1 valid (zeta) int64 8 ``` Unless anyone has any more thoughts, let's plan to merge this over the next few days. Thanks again @ahuang11 ! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add drop duplicates 842940980 | |
813109553 | https://github.com/pydata/xarray/pull/5089#issuecomment-813109553 | https://api.github.com/repos/pydata/xarray/issues/5089 | MDEyOklzc3VlQ29tbWVudDgxMzEwOTU1Mw== | max-sixty 5635139 | 2021-04-04T22:35:15Z | 2021-04-04T22:35:15Z | MEMBER | If we don't hear anything, let's add this to the top of the list for the next dev call in ten days |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add drop duplicates 842940980 | |
811203549 | https://github.com/pydata/xarray/pull/5089#issuecomment-811203549 | https://api.github.com/repos/pydata/xarray/issues/5089 | MDEyOklzc3VlQ29tbWVudDgxMTIwMzU0OQ== | max-sixty 5635139 | 2021-03-31T16:23:22Z | 2021-03-31T16:23:22Z | MEMBER | @pydata/xarray we didn't get to this on the call today — two questions from @mathause :
- should we have |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add drop duplicates 842940980 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1