issue_comments
1 row where author_association = "MEMBER", issue = 591643901 and user = 5635139 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: updated_at (date)
These facets timed out: author_association, issue
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 608102002 | https://github.com/pydata/xarray/pull/3924#issuecomment-608102002 | https://api.github.com/repos/pydata/xarray/issues/3924 | MDEyOklzc3VlQ29tbWVudDYwODEwMjAwMg== | max-sixty 5635139 | 2020-04-02T21:33:29Z | 2020-04-02T21:33:29Z | MEMBER | Hi @zxdawn thanks for the PR, appreciate you making a first contribution. I don't know this code that well, but your examples look reasonable. Any thoughts from those that know this better, @spencerkclark @huard @dcherian ? If we do go ahead and merge this solution, we'd need tests @zxdawn , would you be up for writing those? |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Coordinates passed to interp have nan values 591643901 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1