issue_comments
4 rows where author_association = "MEMBER" and issue = 374025325 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Array indexing with dask arrays · 4 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
992699334 | https://github.com/pydata/xarray/issues/2511#issuecomment-992699334 | https://api.github.com/repos/pydata/xarray/issues/2511 | IC_kwDOAMm_X847K2PG | dcherian 2448579 | 2021-12-13T17:21:20Z | 2021-12-13T17:21:20Z | MEMBER | IIUC this cannot work lazily in most cases if you have dimension coordinate variables. When xarray constructs the output after indexing, it will try to index those coordinate variables so that it can associate the right timestamp (for e.g) with the output. The example from @ulijh should work though (it has no dimension coordinate or indexed variables)
The example by @rafa-guedes (thanks for that one!) could be made to work I think. ``` python import numpy as np import dask.array as da import xarray as xr darr = xr.DataArray(data=[0.2, 0.4, 0.6], coords={"z": range(3)}, dims=("z",)) good_indexer = xr.DataArray( data=np.random.randint(0, 3, 8).reshape(4, 2).astype(int), coords={"y": range(4), "x": range(2)}, dims=("y", "x") ) bad_indexer = xr.DataArray( data=da.random.randint(0, 3, 8).reshape(4, 2).astype(int), coords={"y": range(4), "x": range(2)}, dims=("y", "x") ) In [5]: darr In [6]: good_indexer In [7]: bad_indexer In [8]: darr[good_indexer] We can copy the dimension coordinates of the output (x,y) directly from the indexer. And the dimension coordinate on the input (z) should be a dask array in the output (since z is not a dimension coordinate in the output, this should be fine) |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Array indexing with dask arrays 374025325 | |
568107398 | https://github.com/pydata/xarray/issues/2511#issuecomment-568107398 | https://api.github.com/repos/pydata/xarray/issues/2511 | MDEyOklzc3VlQ29tbWVudDU2ODEwNzM5OA== | dcherian 2448579 | 2019-12-20T22:14:34Z | 2019-12-20T22:14:34Z | MEMBER | I don't think any one is working on it. We would appreciate it if you could try to fix it. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Array indexing with dask arrays 374025325 | |
523149751 | https://github.com/pydata/xarray/issues/2511#issuecomment-523149751 | https://api.github.com/repos/pydata/xarray/issues/2511 | MDEyOklzc3VlQ29tbWVudDUyMzE0OTc1MQ== | shoyer 1217238 | 2019-08-20T18:56:18Z | 2019-08-20T18:56:18Z | MEMBER | Yes, something seems to be going wrong here... |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Array indexing with dask arrays 374025325 | |
433128556 | https://github.com/pydata/xarray/issues/2511#issuecomment-433128556 | https://api.github.com/repos/pydata/xarray/issues/2511 | MDEyOklzc3VlQ29tbWVudDQzMzEyODU1Ng== | shoyer 1217238 | 2018-10-25T16:59:28Z | 2018-10-25T16:59:28Z | MEMBER | For reference, here's the current stacktrace/error message: ```python-traceback TypeError Traceback (most recent call last) <ipython-input-7-74fe4ba70f9d> in <module>() ----> 1 da[{'dim_1' : indc}] /usr/local/lib/python3.6/dist-packages/xarray/core/dataarray.py in getitem(self, key) 472 else: 473 # xarray-style array indexing --> 474 return self.isel(indexers=self._item_key_to_dict(key)) 475 476 def setitem(self, key, value): /usr/local/lib/python3.6/dist-packages/xarray/core/dataarray.py in isel(self, indexers, drop, **indexers_kwargs) 817 """ 818 indexers = either_dict_or_kwargs(indexers, indexers_kwargs, 'isel') --> 819 ds = self._to_temp_dataset().isel(drop=drop, indexers=indexers) 820 return self._from_temp_dataset(ds) 821 /usr/local/lib/python3.6/dist-packages/xarray/core/dataset.py in isel(self, indexers, drop, **indexers_kwargs) 1537 for name, var in iteritems(self._variables): 1538 var_indexers = {k: v for k, v in indexers_list if k in var.dims} -> 1539 new_var = var.isel(indexers=var_indexers) 1540 if not (drop and name in var_indexers): 1541 variables[name] = new_var /usr/local/lib/python3.6/dist-packages/xarray/core/variable.py in isel(self, indexers, drop, **indexers_kwargs) 905 if dim in indexers: 906 key[i] = indexers[dim] --> 907 return self[tuple(key)] 908 909 def squeeze(self, dim=None): /usr/local/lib/python3.6/dist-packages/xarray/core/variable.py in getitem(self, key)
614 array /usr/local/lib/python3.6/dist-packages/xarray/core/variable.py in _broadcast_indexes(self, key) 487 return self._broadcast_indexes_outer(key) 488 --> 489 return self._broadcast_indexes_vectorized(key) 490 491 def _broadcast_indexes_basic(self, key): /usr/local/lib/python3.6/dist-packages/xarray/core/variable.py in _broadcast_indexes_vectorized(self, key) 599 new_order = None 600 --> 601 return out_dims, VectorizedIndexer(tuple(out_key)), new_order 602 603 def getitem(self, key): /usr/local/lib/python3.6/dist-packages/xarray/core/indexing.py in init(self, key) 423 else: 424 raise TypeError('unexpected indexer type for {}: {!r}' --> 425 .format(type(self).name, k)) 426 new_key.append(k) 427 TypeError: unexpected indexer type for VectorizedIndexer: dask.array<xarray-\<this-array>, shape=(10,), dtype=int64, chunksize=(2,)> ``` It looks like we could support this relatively easily since dask.array supports indexing with dask arrays now. This would be a welcome enhancement! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Array indexing with dask arrays 374025325 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 2