issue_comments
5 rows where author_association = "MEMBER" and issue = 301031693 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: reactions, created_at (date), updated_at (date)
issue 1
- Removing dimensions from Dataset objects · 5 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
424025935 | https://github.com/pydata/xarray/issues/1949#issuecomment-424025935 | https://api.github.com/repos/pydata/xarray/issues/1949 | MDEyOklzc3VlQ29tbWVudDQyNDAyNTkzNQ== | shoyer 1217238 | 2018-09-24T15:53:49Z | 2018-09-24T15:53:49Z | MEMBER |
Oops -- yes, that line in the docs / example is broken! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Removing dimensions from Dataset objects 301031693 | |
369319591 | https://github.com/pydata/xarray/issues/1949#issuecomment-369319591 | https://api.github.com/repos/pydata/xarray/issues/1949 | MDEyOklzc3VlQ29tbWVudDM2OTMxOTU5MQ== | shoyer 1217238 | 2018-02-28T17:38:59Z | 2018-02-28T17:38:59Z | MEMBER |
Yes, this was a useful feature that we lost. Note that in general we try to encourage using methods to create new Datasets rather than modifying existing ones inplace. So it might also make sense to add a |
{ "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Removing dimensions from Dataset objects 301031693 | |
369294450 | https://github.com/pydata/xarray/issues/1949#issuecomment-369294450 | https://api.github.com/repos/pydata/xarray/issues/1949 | MDEyOklzc3VlQ29tbWVudDM2OTI5NDQ1MA== | shoyer 1217238 | 2018-02-28T16:23:40Z | 2018-02-28T16:23:40Z | MEMBER | If you're OK creating a new Dataset, it works to remove any variables using a dimension, e.g., ``` In [25]: test_dataset = xr.Dataset(dict( ...: empty_array=xr.DataArray([], dims='a'), ...: populated_array=xr.DataArray([1], {'b':['1']}, 'b') ...: )) ...: In [26]: test_dataset Out[26]: <xarray.Dataset> Dimensions: (a: 0, b: 1) Coordinates: * b (b) <U1 '1' Dimensions without coordinates: a Data variables: empty_array (a) float64 populated_array (b) int64 1 In [27]: test_dataset.drop('empty_array') Out[27]: <xarray.Dataset> Dimensions: (b: 1) Coordinates: * b (b) <U1 '1' Data variables: populated_array (b) int64 1 ``` You're right that this doesn't work to remove dimensions from existing datasets (e.g., with In [47]: del test_dataset['b'] In [48]: test_dataset Out[48]: <xarray.Dataset> Dimensions: (a: 0, b: 1) Dimensions without coordinates: a, b Data variables: empty_array (a) float64 populated_array (b) int64 1 In [49]: del test_dataset['populated_array'] In [50]: test_dataset Out[50]: <xarray.Dataset> Dimensions: (a: 0, b: 1) Dimensions without coordinates: a, b Data variables: empty_array (a) float64 ```
This used to be possible in the xarray data model prior to v0.9.0. When we made coordinates optional, I updated I'd like to suggest two possible fixes:
1. Update |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Removing dimensions from Dataset objects 301031693 | |
369267269 | https://github.com/pydata/xarray/issues/1949#issuecomment-369267269 | https://api.github.com/repos/pydata/xarray/issues/1949 | MDEyOklzc3VlQ29tbWVudDM2OTI2NzI2OQ== | max-sixty 5635139 | 2018-02-28T15:03:56Z | 2018-02-28T15:03:56Z | MEMBER | Hmmm, this is harder than I originally expected. I imagine someone will comment with an easy solution, otherwise I'll have another look |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Removing dimensions from Dataset objects 301031693 | |
369246561 | https://github.com/pydata/xarray/issues/1949#issuecomment-369246561 | https://api.github.com/repos/pydata/xarray/issues/1949 | MDEyOklzc3VlQ29tbWVudDM2OTI0NjU2MQ== | max-sixty 5635139 | 2018-02-28T13:57:18Z | 2018-02-28T13:59:43Z | MEMBER | I think SO is the best place for user Qs, so the answers can be searchable for future generations. To respond immediately though, have you tried ```python In [1]: import xarray as xr In [2]: test_dataset = xr.Dataset(dict( ...: empty_array=xr.DataArray([], dims='a'), ...: populated_array=xr.DataArray([1], {'b':['1']}, 'b') ...: )) In [3]: test_dataset Out[3]: <xarray.Dataset> Dimensions: (a: 0, b: 1) Coordinates: * b (b) <U1 '1' Dimensions without coordinates: a Data variables: empty_array (a) float64 populated_array (b) int64 1 In [4]: test_dataset.squeeze() Out[4]: <xarray.Dataset> Dimensions: (a: 0) Coordinates: b <U1 '1' Dimensions without coordinates: a Data variables: empty_array (a) float64 populated_array int64 1 ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Removing dimensions from Dataset objects 301031693 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 2