issue_comments: 369246561
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/1949#issuecomment-369246561 | https://api.github.com/repos/pydata/xarray/issues/1949 | 369246561 | MDEyOklzc3VlQ29tbWVudDM2OTI0NjU2MQ== | 5635139 | 2018-02-28T13:57:18Z | 2018-02-28T13:59:43Z | MEMBER | I think SO is the best place for user Qs, so the answers can be searchable for future generations. To respond immediately though, have you tried ```python In [1]: import xarray as xr In [2]: test_dataset = xr.Dataset(dict( ...: empty_array=xr.DataArray([], dims='a'), ...: populated_array=xr.DataArray([1], {'b':['1']}, 'b') ...: )) In [3]: test_dataset Out[3]: <xarray.Dataset> Dimensions: (a: 0, b: 1) Coordinates: * b (b) <U1 '1' Dimensions without coordinates: a Data variables: empty_array (a) float64 populated_array (b) int64 1 In [4]: test_dataset.squeeze() Out[4]: <xarray.Dataset> Dimensions: (a: 0) Coordinates: b <U1 '1' Dimensions without coordinates: a Data variables: empty_array (a) float64 populated_array int64 1 ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
301031693 |