issue_comments
4 rows where author_association = "MEMBER" and issue = 280899335 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Use of Xarray instead of np.meshgrid · 4 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
350879291 | https://github.com/pydata/xarray/issues/1773#issuecomment-350879291 | https://api.github.com/repos/pydata/xarray/issues/1773 | MDEyOklzc3VlQ29tbWVudDM1MDg3OTI5MQ== | shoyer 1217238 | 2017-12-11T22:27:58Z | 2017-12-11T22:27:58Z | MEMBER | It seems that sympy functions returned by lambdfy may not work on arbitrary dimensional inputs, or might not follow broadcasting rules. The workaround might be something like: ```python def vector_func_wrapper(dx, dy, dz, dt): dx, dy, dz, dt = np.broadcast_arrays(dx, dy, dz, dt) # explicitly broadcast args = [a.ravel() for a in [dx, dy, dz, dt]] # convert everything to a vector return vector_funcN(*args).reshape(dx.shape) xarray.apply_ufunc(vector_func_wrapper, dx, dy, dz, dt) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Use of Xarray instead of np.meshgrid 280899335 | |
350821050 | https://github.com/pydata/xarray/issues/1773#issuecomment-350821050 | https://api.github.com/repos/pydata/xarray/issues/1773 | MDEyOklzc3VlQ29tbWVudDM1MDgyMTA1MA== | shoyer 1217238 | 2017-12-11T18:54:03Z | 2017-12-11T18:54:03Z | MEMBER | Broadcast allows a variadic number of arguments, so you can write something like:
I'm not very familiar with sympy's lambdify, but I think something like |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Use of Xarray instead of np.meshgrid 280899335 | |
350806352 | https://github.com/pydata/xarray/issues/1773#issuecomment-350806352 | https://api.github.com/repos/pydata/xarray/issues/1773 | MDEyOklzc3VlQ29tbWVudDM1MDgwNjM1Mg== | shoyer 1217238 | 2017-12-11T18:02:39Z | 2017-12-11T18:02:39Z | MEMBER | If you make each of your arrays |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Use of Xarray instead of np.meshgrid 280899335 | |
350666998 | https://github.com/pydata/xarray/issues/1773#issuecomment-350666998 | https://api.github.com/repos/pydata/xarray/issues/1773 | MDEyOklzc3VlQ29tbWVudDM1MDY2Njk5OA== | fmaussion 10050469 | 2017-12-11T09:23:00Z | 2017-12-11T09:23:00Z | MEMBER | Is this what you want? ```python import numpy as np import xarray as xr DomainSpaceTimeSize = 5 # using cartesian 4D SpaceTimeDensity = [100, 5] # 100 divisions in space 5 in time x_coord = np.linspace(-DomainSpaceTimeSize, +DomainSpaceTimeSize, SpaceTimeDensity[0]) y_coord = np.linspace(-DomainSpaceTimeSize, +DomainSpaceTimeSize, SpaceTimeDensity[0]) z_coord = np.linspace(-DomainSpaceTimeSize, +DomainSpaceTimeSize, SpaceTimeDensity[0]) t_coord = np.linspace(0, +DomainSpaceTimeSize, SpaceTimeDensity[1]) scale_func = lambda x, y, z, t: np.cos(1x+2y+3z-4t) data = scale_func(*np.meshgrid(x_coord, y_coord, z_coord, t_coord)) da = xr.DataArray(data, dims=['x', 'y', 'z', 't'], coords={'x':x_coord, 'y':y_coord, 'z':z_coord, 't':t_coord}) da.sel(x=0.0, y=1.0, z=0.0, t=3.0, method='nearest') <xarray.DataArray ()> array(-0.8039436986070311) Coordinates: x float64 0.05051 z float64 0.05051 t float64 2.5 y float64 0.9596 ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Use of Xarray instead of np.meshgrid 280899335 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 2