issue_comments: 350666998
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/1773#issuecomment-350666998 | https://api.github.com/repos/pydata/xarray/issues/1773 | 350666998 | MDEyOklzc3VlQ29tbWVudDM1MDY2Njk5OA== | 10050469 | 2017-12-11T09:23:00Z | 2017-12-11T09:23:00Z | MEMBER | Is this what you want? ```python import numpy as np import xarray as xr DomainSpaceTimeSize = 5 # using cartesian 4D SpaceTimeDensity = [100, 5] # 100 divisions in space 5 in time x_coord = np.linspace(-DomainSpaceTimeSize, +DomainSpaceTimeSize, SpaceTimeDensity[0]) y_coord = np.linspace(-DomainSpaceTimeSize, +DomainSpaceTimeSize, SpaceTimeDensity[0]) z_coord = np.linspace(-DomainSpaceTimeSize, +DomainSpaceTimeSize, SpaceTimeDensity[0]) t_coord = np.linspace(0, +DomainSpaceTimeSize, SpaceTimeDensity[1]) scale_func = lambda x, y, z, t: np.cos(1x+2y+3z-4t) data = scale_func(*np.meshgrid(x_coord, y_coord, z_coord, t_coord)) da = xr.DataArray(data, dims=['x', 'y', 'z', 't'], coords={'x':x_coord, 'y':y_coord, 'z':z_coord, 't':t_coord}) da.sel(x=0.0, y=1.0, z=0.0, t=3.0, method='nearest') <xarray.DataArray ()> array(-0.8039436986070311) Coordinates: x float64 0.05051 z float64 0.05051 t float64 2.5 y float64 0.9596 ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
280899335 |