home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

9 rows where author_association = "MEMBER" and issue = 256496917 sorted by updated_at descending

✖
✖
✖

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 3

  • fmaussion 4
  • shoyer 3
  • max-sixty 2

issue 1

  • Regression: time attributes on PeriodIndex · 9 ✖

author_association 1

  • MEMBER · 9 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
883607729 https://github.com/pydata/xarray/issues/1565#issuecomment-883607729 https://api.github.com/repos/pydata/xarray/issues/1565 IC_kwDOAMm_X840qsix max-sixty 5635139 2021-07-20T18:33:29Z 2021-07-20T18:33:29Z MEMBER

@hding1981 you would need to make a MCVE like this: https://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports in a new issue. It's unlikely someone can help you debug your data.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917
883589599 https://github.com/pydata/xarray/issues/1565#issuecomment-883589599 https://api.github.com/repos/pydata/xarray/issues/1565 IC_kwDOAMm_X840qoHf max-sixty 5635139 2021-07-20T18:04:52Z 2021-07-20T18:04:52Z MEMBER

@hding1981 IIUC this isn't supported at the moment. Though with the approaching index refactor, we may be able to support this more easily

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917
329177780 https://github.com/pydata/xarray/issues/1565#issuecomment-329177780 https://api.github.com/repos/pydata/xarray/issues/1565 MDEyOklzc3VlQ29tbWVudDMyOTE3Nzc4MA== fmaussion 10050469 2017-09-13T14:03:06Z 2017-09-13T14:03:06Z MEMBER

Potentially we could some sort of API for surfacing this information, e.g., a pandas_dtype property to xarray.Variable.

It's probably cleaner, because the dtype of PeriodIndex can be several things, i.e. 'period[M]' in my case.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917
328654477 https://github.com/pydata/xarray/issues/1565#issuecomment-328654477 https://api.github.com/repos/pydata/xarray/issues/1565 MDEyOklzc3VlQ29tbWVudDMyODY1NDQ3Nw== shoyer 1217238 2017-09-11T20:50:16Z 2017-09-11T20:50:16Z MEMBER

It's only an dtype=object array externally: internally, the data is still stored as a pandas.PeriodIndex. I think you'll find that inside ref_var._data.array .

Potentially we could some sort of API for surfacing this information, e.g., a pandas_dtype property to xarray.Variable.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917
328637548 https://github.com/pydata/xarray/issues/1565#issuecomment-328637548 https://api.github.com/repos/pydata/xarray/issues/1565 MDEyOklzc3VlQ29tbWVudDMyODYzNzU0OA== fmaussion 10050469 2017-09-11T19:43:19Z 2017-09-11T19:43:19Z MEMBER

OK, so the problem is that when given to is_datetime_like here, the pd.PeriodIndex is already transformed into an array of dtype object.

Before @darothen 's https://github.com/pydata/xarray/pull/1356, the piece if code that was executed is date = ref_var.to_index(), which has the nice property to return a PeriodIndex, as shown here from my debugger:

```python

ref_var Out[1]: <xarray.IndexVariable 'time' (time: 12)> array([Period('2000-01', 'M'), Period('2000-02', 'M'), Period('2000-03', 'M'), Period('2000-04', 'M'), Period('2000-05', 'M'), Period('2000-06', 'M'), Period('2000-07', 'M'), Period('2000-08', 'M'), Period('2000-09', 'M'), Period('2000-10', 'M'), Period('2000-11', 'M'), Period('2000-12', 'M')], dtype=object) ref_var.to_index() Out[3]: PeriodIndex(['2000-01', '2000-02', '2000-03', '2000-04', '2000-05', '2000-06', '2000-07', '2000-08', '2000-09', '2000-10', '2000-11', '2000-12'], dtype='period[M]', name='time', freq='M') ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917
328575741 https://github.com/pydata/xarray/issues/1565#issuecomment-328575741 https://api.github.com/repos/pydata/xarray/issues/1565 MDEyOklzc3VlQ29tbWVudDMyODU3NTc0MQ== fmaussion 10050469 2017-09-11T16:00:43Z 2017-09-11T16:00:43Z MEMBER

Indeed! Will look into it.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917
328573731 https://github.com/pydata/xarray/issues/1565#issuecomment-328573731 https://api.github.com/repos/pydata/xarray/issues/1565 MDEyOklzc3VlQ29tbWVudDMyODU3MzczMQ== shoyer 1217238 2017-09-11T15:54:19Z 2017-09-11T15:54:19Z MEMBER

Looks like https://github.com/pydata/xarray/pull/1356, which introduced a is_datatime_like() check to the dtype of a variable before adding time components.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917
328469339 https://github.com/pydata/xarray/issues/1565#issuecomment-328469339 https://api.github.com/repos/pydata/xarray/issues/1565 MDEyOklzc3VlQ29tbWVudDMyODQ2OTMzOQ== fmaussion 10050469 2017-09-11T09:13:21Z 2017-09-11T09:13:21Z MEMBER

I was wondering which PR was responsible for the regression, but I guess I don't understand the internals well enough to classify this as "easy fix" for me ;)

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917
328400022 https://github.com/pydata/xarray/issues/1565#issuecomment-328400022 https://api.github.com/repos/pydata/xarray/issues/1565 MDEyOklzc3VlQ29tbWVudDMyODQwMDAyMg== shoyer 1217238 2017-09-11T02:31:41Z 2017-09-11T02:31:41Z MEMBER

I never intended to support time attributes on PeriodIndex objects so there was never any test coverage here, but I guess it has been working! Nonetheless this should be pretty easy to fix.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 11.455ms · About: xarray-datasette
  • Sort ascending
  • Sort descending
  • Facet by this
  • Hide this column
  • Show all columns
  • Show not-blank rows