home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

12 rows where issue = 256496917 sorted by updated_at descending

✖
✖

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 5

  • fmaussion 4
  • shoyer 3
  • max-sixty 2
  • hding1981 2
  • stale[bot] 1

author_association 2

  • MEMBER 9
  • NONE 3

issue 1

  • Regression: time attributes on PeriodIndex · 12 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
883607729 https://github.com/pydata/xarray/issues/1565#issuecomment-883607729 https://api.github.com/repos/pydata/xarray/issues/1565 IC_kwDOAMm_X840qsix max-sixty 5635139 2021-07-20T18:33:29Z 2021-07-20T18:33:29Z MEMBER

@hding1981 you would need to make a MCVE like this: https://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports in a new issue. It's unlikely someone can help you debug your data.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917
883603251 https://github.com/pydata/xarray/issues/1565#issuecomment-883603251 https://api.github.com/repos/pydata/xarray/issues/1565 IC_kwDOAMm_X840qrcz hding1981 87719516 2021-07-20T18:26:08Z 2021-07-20T18:26:08Z NONE

I am calculating monthly mean anomalies from a CMIP6 file, which is attached and ended by .docx (Please remove .docx from its name after downloading it).

This file has reasonable time coordinate, which has been confirmed by ncdump and cdo. But it shows NaT after a time point by reading the file using xr.open_dataset. I printed out outputs of processing this file using some commands in a jyputer notebook in a pdf file, which is also attached. I really have no idea why xr.open_datase cannot read the time coordinate properly.

Then, I thought maybe I can redefine its time axis by pd.date_range. But it is also not working.

Thank you so much!

Untitled5 - Jupyter Notebook.pdf ts_Amon_CNRM-CM6-1_piControl_r1i1p1f2_gr_185001-234912.tmp.nc.docx

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917
883589599 https://github.com/pydata/xarray/issues/1565#issuecomment-883589599 https://api.github.com/repos/pydata/xarray/issues/1565 IC_kwDOAMm_X840qoHf max-sixty 5635139 2021-07-20T18:04:52Z 2021-07-20T18:04:52Z MEMBER

@hding1981 IIUC this isn't supported at the moment. Though with the approaching index refactor, we may be able to support this more easily

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917
883585227 https://github.com/pydata/xarray/issues/1565#issuecomment-883585227 https://api.github.com/repos/pydata/xarray/issues/1565 IC_kwDOAMm_X840qnDL hding1981 87719516 2021-07-20T17:57:55Z 2021-07-20T17:57:55Z NONE

I have similar problems with time coordinate. How did you solve your problem in the end?

I also list my problem here.

The following are my commands in a jupyter notebook

import xarray as xr import numpy as np import pandas as pd import sys

dset=xr.open_dataset("input/ts_Amon_CNRM-CM6-1_piControl_r1i1p1f2_gr_185001-234912.nc",decode_times=False) dset['time'] = pd.period_range(start='1850-01-15', end='2349-12-15', freq='M') varname="ts" anom = dset[varname].groupby('time.month')-dset[varname].groupby('time.month').mean('time', keep_attrs=True)

Then, I got the following error message.


KeyError Traceback (most recent call last) ~/miniconda3/envs/python_tutorial/lib/python3.9/site-packages/xarray/core/dataarray.py in _getitem_coord(self, key) 692 try: --> 693 var = self._coords[key] 694 except KeyError:

KeyError: 'time.month'

During handling of the above exception, another exception occurred:

AttributeError Traceback (most recent call last) <ipython-input-1-250a6867750b> in <module> 7 dset['time'] = pd.period_range(start='1850-01-15', end='2349-12-15', freq='M') 8 varname="ts" ----> 9 anom = dset[varname].groupby('time.month')-dset[varname].groupby('time.month').mean('time', keep_attrs=True)

~/miniconda3/envs/python_tutorial/lib/python3.9/site-packages/xarray/core/common.py in groupby(self, group, squeeze, restore_coord_dims) 703 ) 704 --> 705 return self._groupby_cls( 706 self, group, squeeze=squeeze, restore_coord_dims=restore_coord_dims 707 )

~/miniconda3/envs/python_tutorial/lib/python3.9/site-packages/xarray/core/groupby.py in init(self, obj, group, squeeze, grouper, bins, restore_coord_dims, cut_kwargs) 313 f"Received {group!r} instead." 314 ) --> 315 group = obj[group] 316 if len(group) == 0: 317 raise ValueError(f"{group.name} must not be empty")

~/miniconda3/envs/python_tutorial/lib/python3.9/site-packages/xarray/core/dataarray.py in getitem(self, key) 702 def getitem(self, key: Any) -> "DataArray": 703 if isinstance(key, str): --> 704 return self._getitem_coord(key) 705 else: 706 # xarray-style array indexing

~/miniconda3/envs/python_tutorial/lib/python3.9/site-packages/xarray/core/dataarray.py in getitem_coord(self, key) 694 except KeyError: 695 dim_sizes = dict(zip(self.dims, self.shape)) --> 696 , key, var = _get_virtual_variable( 697 self._coords, key, self._level_coords, dim_sizes 698 )

~/miniconda3/envs/python_tutorial/lib/python3.9/site-packages/xarray/core/dataset.py in _get_virtual_variable(variables, key, level_vars, dim_sizes) 179 data = getattr(ref_var.dt, var_name).data 180 else: --> 181 data = getattr(ref_var, var_name).data 182 virtual_var = Variable(ref_var.dims, data) 183

AttributeError: 'IndexVariable' object has no attribute 'month'

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917
521268567 https://github.com/pydata/xarray/issues/1565#issuecomment-521268567 https://api.github.com/repos/pydata/xarray/issues/1565 MDEyOklzc3VlQ29tbWVudDUyMTI2ODU2Nw== stale[bot] 26384082 2019-08-14T14:26:10Z 2019-08-14T14:26:10Z NONE

In order to maintain a list of currently relevant issues, we mark issues as stale after a period of inactivity

If this issue remains relevant, please comment here or remove the stale label; otherwise it will be marked as closed automatically

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917
329177780 https://github.com/pydata/xarray/issues/1565#issuecomment-329177780 https://api.github.com/repos/pydata/xarray/issues/1565 MDEyOklzc3VlQ29tbWVudDMyOTE3Nzc4MA== fmaussion 10050469 2017-09-13T14:03:06Z 2017-09-13T14:03:06Z MEMBER

Potentially we could some sort of API for surfacing this information, e.g., a pandas_dtype property to xarray.Variable.

It's probably cleaner, because the dtype of PeriodIndex can be several things, i.e. 'period[M]' in my case.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917
328654477 https://github.com/pydata/xarray/issues/1565#issuecomment-328654477 https://api.github.com/repos/pydata/xarray/issues/1565 MDEyOklzc3VlQ29tbWVudDMyODY1NDQ3Nw== shoyer 1217238 2017-09-11T20:50:16Z 2017-09-11T20:50:16Z MEMBER

It's only an dtype=object array externally: internally, the data is still stored as a pandas.PeriodIndex. I think you'll find that inside ref_var._data.array .

Potentially we could some sort of API for surfacing this information, e.g., a pandas_dtype property to xarray.Variable.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917
328637548 https://github.com/pydata/xarray/issues/1565#issuecomment-328637548 https://api.github.com/repos/pydata/xarray/issues/1565 MDEyOklzc3VlQ29tbWVudDMyODYzNzU0OA== fmaussion 10050469 2017-09-11T19:43:19Z 2017-09-11T19:43:19Z MEMBER

OK, so the problem is that when given to is_datetime_like here, the pd.PeriodIndex is already transformed into an array of dtype object.

Before @darothen 's https://github.com/pydata/xarray/pull/1356, the piece if code that was executed is date = ref_var.to_index(), which has the nice property to return a PeriodIndex, as shown here from my debugger:

```python

ref_var Out[1]: <xarray.IndexVariable 'time' (time: 12)> array([Period('2000-01', 'M'), Period('2000-02', 'M'), Period('2000-03', 'M'), Period('2000-04', 'M'), Period('2000-05', 'M'), Period('2000-06', 'M'), Period('2000-07', 'M'), Period('2000-08', 'M'), Period('2000-09', 'M'), Period('2000-10', 'M'), Period('2000-11', 'M'), Period('2000-12', 'M')], dtype=object) ref_var.to_index() Out[3]: PeriodIndex(['2000-01', '2000-02', '2000-03', '2000-04', '2000-05', '2000-06', '2000-07', '2000-08', '2000-09', '2000-10', '2000-11', '2000-12'], dtype='period[M]', name='time', freq='M') ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917
328575741 https://github.com/pydata/xarray/issues/1565#issuecomment-328575741 https://api.github.com/repos/pydata/xarray/issues/1565 MDEyOklzc3VlQ29tbWVudDMyODU3NTc0MQ== fmaussion 10050469 2017-09-11T16:00:43Z 2017-09-11T16:00:43Z MEMBER

Indeed! Will look into it.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917
328573731 https://github.com/pydata/xarray/issues/1565#issuecomment-328573731 https://api.github.com/repos/pydata/xarray/issues/1565 MDEyOklzc3VlQ29tbWVudDMyODU3MzczMQ== shoyer 1217238 2017-09-11T15:54:19Z 2017-09-11T15:54:19Z MEMBER

Looks like https://github.com/pydata/xarray/pull/1356, which introduced a is_datatime_like() check to the dtype of a variable before adding time components.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917
328469339 https://github.com/pydata/xarray/issues/1565#issuecomment-328469339 https://api.github.com/repos/pydata/xarray/issues/1565 MDEyOklzc3VlQ29tbWVudDMyODQ2OTMzOQ== fmaussion 10050469 2017-09-11T09:13:21Z 2017-09-11T09:13:21Z MEMBER

I was wondering which PR was responsible for the regression, but I guess I don't understand the internals well enough to classify this as "easy fix" for me ;)

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917
328400022 https://github.com/pydata/xarray/issues/1565#issuecomment-328400022 https://api.github.com/repos/pydata/xarray/issues/1565 MDEyOklzc3VlQ29tbWVudDMyODQwMDAyMg== shoyer 1217238 2017-09-11T02:31:41Z 2017-09-11T02:31:41Z MEMBER

I never intended to support time attributes on PeriodIndex objects so there was never any test coverage here, but I guess it has been working! Nonetheless this should be pretty easy to fix.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Regression: time attributes on PeriodIndex 256496917

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 86.509ms · About: xarray-datasette
  • Sort ascending
  • Sort descending
  • Facet by this
  • Hide this column
  • Show all columns
  • Show not-blank rows