issue_comments
1 row where author_association = "MEMBER", issue = 190026722 and user = 2443309 sorted by updated_at descending
This data as json, CSV (advanced)
These facets timed out: author_association, issue
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
315178012 | https://github.com/pydata/xarray/pull/1131#issuecomment-315178012 | https://api.github.com/repos/pydata/xarray/issues/1131 | MDEyOklzc3VlQ29tbWVudDMxNTE3ODAxMg== | jhamman 2443309 | 2017-07-13T19:27:25Z | 2017-07-13T19:27:25Z | MEMBER | In reviewing this PR, I'm not really a fan of special casing the 1-D array in the way described above. These sorts of decisions lead to unexpected/confusing behavior when scaling up analysis. Obviously there is a tradeoff here as we diverge from how the |
{ "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fix #1040: diff dim argument should be optional 190026722 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1