issue_comments
5 rows where author_association = "CONTRIBUTOR" and user = 8291800 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, reactions, created_at (date), updated_at (date)
user 1
- scottstanie · 5 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1012204673 | https://github.com/pydata/xarray/issues/5706#issuecomment-1012204673 | https://api.github.com/repos/pydata/xarray/issues/5706 | IC_kwDOAMm_X848VQSB | scottstanie 8291800 | 2022-01-13T14:48:08Z | 2022-01-13T14:48:08Z | CONTRIBUTOR | Sounds good, but it seems like you're correct that it's a netcdf/netcdf4-python problem here, so I'll defer to others as to what the best changes to default settings would be to avoid the segfaults |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Loading datasets of numpy string arrays leads to error and/or segfault 970619131 | |
1012132794 | https://github.com/pydata/xarray/issues/5706#issuecomment-1012132794 | https://api.github.com/repos/pydata/xarray/issues/5706 | IC_kwDOAMm_X848U-u6 | scottstanie 8291800 | 2022-01-13T13:23:45Z | 2022-01-13T13:23:45Z | CONTRIBUTOR | ah sorry, didn't see the request for ``` $ ncdump test_str_list.h5 netcdf test_str_list { dimensions: phony_dim_0 = 2 ; phony_dim_1 = 2 ; variables: string pairs(phony_dim_0, phony_dim_1) ; data: pairs =
"2020010120200201 ", NIL,
"2020010120200301 ", NIL ;
}
``` netcdf test_str_list_attr { // global attributes: string :NULLPAD = "20200101�<T��\007", "20200201", "20200101�=T��\007", "20200301" ; string :NULLTERM = "20200101", "20200201", "20200101", "20200301" ; string :numpy_S = "20200101", "20200201\1775T��\007", "20200101", "20200301�3T��\007" ; string :numpy_O = "20200101", "20200201", "20200101", "20200301" ; } ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Loading datasets of numpy string arrays leads to error and/or segfault 970619131 | |
1011734052 | https://github.com/pydata/xarray/issues/6000#issuecomment-1011734052 | https://api.github.com/repos/pydata/xarray/issues/6000 | IC_kwDOAMm_X848TdYk | scottstanie 8291800 | 2022-01-13T03:08:02Z | 2022-01-13T03:08:02Z | CONTRIBUTOR | Sorry, should have included that version of the error as well. Both give errors. Here's when I use During handling of the above exception, another exception occurred: Traceback (most recent call last): File "testxr.py", line 35, in <module> da_new.to_dataset(name="new_testdata").to_netcdf("testdata.nc", engine="h5netcdf") File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/xarray/core/dataset.py", line 1900, in to_netcdf return to_netcdf( File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/xarray/backends/api.py", line 1060, in to_netcdf store = store_open(target, mode, format, group, kwargs) File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/xarray/backends/h5netcdf_.py", line 178, in open return cls(manager, group=group, mode=mode, lock=lock, autoclose=autoclose) File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/xarray/backends/h5netcdf_.py", line 123, in init self.filename = find_root_and_group(self.ds)[0].filename File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/xarray/backends/h5netcdf.py", line 189, in ds return self.acquire() File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/xarray/backends/h5netcdf.py", line 181, in _acquire with self._manager.acquire_context(needs_lock) as root: File "/home/scott/miniconda3/envs/mapping/lib/python3.8/contextlib.py", line 113, in enter return next(self.gen) File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/xarray/backends/file_manager.py", line 187, in acquire_context file, cached = self._acquire_with_cache_info(needs_lock) File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/xarray/backends/file_manager.py", line 205, in _acquire_with_cache_info file = self._opener(*self._args, kwargs) File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/h5netcdf/core.py", line 712, in init self._h5file = h5py.File(path, mode, **kwargs) File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/h5py/_hl/files.py", line 406, in init fid = make_fid(name, mode, userblock_size, File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/h5py/_hl/files.py", line 179, in make_fid fid = h5f.create(name, h5f.ACC_TRUNC, fapl=fapl, fcpl=fcpl) File "h5py/_objects.pyx", line 54, in h5py._objects.with_phil.wrapper File "h5py/_objects.pyx", line 55, in h5py._objects.with_phil.wrapper File "h5py/h5f.pyx", line 108, in h5py.h5f.create OSError: Unable to create file (unable to lock file, errno = 11, error message = 'Resource temporarily unavailable') ``` And here's the original ```$ python testxr.py Traceback (most recent call last): File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/xarray/backends/file_manager.py", line 199, in _acquire_with_cache_info file = self._cache[self._key] File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/xarray/backends/lru_cache.py", line 53, in getitem value = self._cache[key] KeyError: [<class 'h5netcdf.core.File'>, ('/home/scott/testdata.nc',), 'a', (('invalid_netcdf', None),)] During handling of the above exception, another exception occurred: Traceback (most recent call last): File "testxr.py", line 35, in <module> da_new.to_dataset(name="new_testdata").to_netcdf("testdata.nc", engine="h5netcdf") File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/xarray/core/dataset.py", line 1900, in to_netcdf return to_netcdf( File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/xarray/backends/api.py", line 1060, in to_netcdf store = store_open(target, mode, format, group, kwargs) File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/xarray/backends/h5netcdf_.py", line 178, in open return cls(manager, group=group, mode=mode, lock=lock, autoclose=autoclose) File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/xarray/backends/h5netcdf_.py", line 123, in init self.filename = find_root_and_group(self.ds)[0].filename File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/xarray/backends/h5netcdf.py", line 189, in ds return self.acquire() File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/xarray/backends/h5netcdf.py", line 181, in _acquire with self._manager.acquire_context(needs_lock) as root: File "/home/scott/miniconda3/envs/mapping/lib/python3.8/contextlib.py", line 113, in enter return next(self.gen) File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/xarray/backends/file_manager.py", line 187, in acquire_context file, cached = self._acquire_with_cache_info(needs_lock) File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/xarray/backends/file_manager.py", line 205, in _acquire_with_cache_info file = self._opener(*self._args, kwargs) File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/h5netcdf/core.py", line 712, in init self._h5file = h5py.File(path, mode, **kwargs) File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/h5py/_hl/files.py", line 406, in init fid = make_fid(name, mode, userblock_size, File "/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/h5py/_hl/files.py", line 179, in make_fid fid = h5f.create(name, h5f.ACC_TRUNC, fapl=fapl, fcpl=fcpl) File "h5py/_objects.pyx", line 54, in h5py._objects.with_phil.wrapper File "h5py/_objects.pyx", line 55, in h5py._objects.with_phil.wrapper File "h5py/h5f.pyx", line 108, in h5py.h5f.create OSError: Unable to create file (unable to lock file, errno = 11, error message = 'Resource temporarily unavailable') ```
>>> xarray.show_versions()
INSTALLED VERSIONS
------------------
commit: None
python: 3.8.5 (default, Sep 4 2020, 07:30:14)
[GCC 7.3.0]
python-bits: 64
OS: Linux
OS-release: 3.10.0-1127.19.1.el7.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.10.6
libnetcdf: 4.8.0
xarray: 0.19.0
pandas: 1.1.2
numpy: 1.21.2
scipy: 1.6.1
netCDF4: 1.5.7
pydap: None
h5netcdf: 0.11.0
h5py: 2.10.0
Nio: None
zarr: 2.8.3
cftime: 1.2.1
nc_time_axis: None
PseudoNetCDF: None
rasterio: 1.2.8
cfgrib: 0.9.8.5
iris: None
bottleneck: 1.3.2
dask: 2.12.0
distributed: 2.25.0
matplotlib: 3.3.1
cartopy: 0.20.0
seaborn: None
numbagg: None
pint: 0.17
setuptools: 49.6.0.post20200814
pip: 20.0.2
conda: 4.8.4
pytest: None
IPython: 7.18.1
sphinx: 4.0.2
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Parallel access to DataArray within `with` statement causes `BlockingIOError` 1056881922 | |
1011556328 | https://github.com/pydata/xarray/issues/5706#issuecomment-1011556328 | https://api.github.com/repos/pydata/xarray/issues/5706 | IC_kwDOAMm_X848Sx_o | scottstanie 8291800 | 2022-01-12T23:51:07Z | 2022-01-12T23:53:01Z | CONTRIBUTOR | sure! here it is:
(and just to include the specific traceback that hapened now, in case my versions are different from what I showed):
In [4]: import h5py
...: import xarray as xr
...:
...: with h5py.File("test_str_list.h5", "w") as hf:
...: hf["pairs"] = np.array([["20200101", "20200201"], ["20200101", "20200301"]]).astype("S")
...:
...: ds = xr.load_dataset("test_str_list.h5")
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/xarray/backends/plugins.py:68: RuntimeWarning: Engine 'cfgrib' loading failed:
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/gribapi/_bindings.cpython-38-x86_64-linux-gnu.so: undefined symbol: codes_bufr_key_is_header
warnings.warn(f"Engine {name!r} loading failed:\n{ex}", RuntimeWarning)
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/fsspec/implementations/local.py:29: FutureWarning: The default value of auto_mkdir=True has been deprecated and will be changed to auto_mkdir=False by default in a future release.
warnings.warn(
*** Error in `/home/scott/miniconda3/envs/mapping/bin/python': free(): invalid next size (fast): 0x00005564b64622a0 ***
======= Backtrace: =========
/lib64/libc.so.6(+0x81679)[0x7f56e752b679]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/netCDF4/../../../libnetcdf.so.18(nc_free_string+0x25)[0x7f54cf53d1a5]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/netCDF4/_netCDF4.cpython-38-x86_64-linux-gnu.so(+0xcf3c8)[0x7f54cf7313c8]
/home/scott/miniconda3/envs/mapping/bin/python(PyCFunction_Call+0x54)[0x5564b397df44]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/netCDF4/_netCDF4.cpython-38-x86_64-linux-gnu.so(+0x224fd)[0x7f54cf6844fd]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/netCDF4/_netCDF4.cpython-38-x86_64-linux-gnu.so(+0x559d9)[0x7f54cf6b79d9]
/home/scott/miniconda3/envs/mapping/bin/python(PyObject_GetItem+0x45)[0x5564b39d7935]
/home/scott/miniconda3/envs/mapping/bin/python(+0x128e0b)[0x5564b397ae0b]
/home/scott/miniconda3/envs/mapping/bin/python(_PyEval_EvalFrameDefault+0x947)[0x5564b3a1ec77]
/home/scott/miniconda3/envs/mapping/bin/python(+0x1b0736)[0x5564b3a02736]
/home/scott/miniconda3/envs/mapping/bin/python(_PyEval_EvalFrameDefault+0x947)[0x5564b3a1ec77]
/home/scott/miniconda3/envs/mapping/bin/python(_PyFunction_Vectorcall+0x1a6)[0x5564b3a01fc6]
/home/scott/miniconda3/envs/mapping/bin/python(_PyEval_EvalFrameDefault+0x4e03)[0x5564b3a23133]
/home/scott/miniconda3/envs/mapping/bin/python(_PyFunction_Vectorcall+0x1a6)[0x5564b3a01fc6]
/home/scott/miniconda3/envs/mapping/bin/python(+0x1800cd)[0x5564b39d20cd]
/home/scott/miniconda3/envs/mapping/bin/python(PyObject_GetItem+0x45)[0x5564b39d7935]
/home/scott/miniconda3/envs/mapping/bin/python(_PyEval_EvalFrameDefault+0xd53)[0x5564b3a1f083]
/home/scott/miniconda3/envs/mapping/bin/python(_PyEval_EvalCodeWithName+0x2c3)[0x5564b3a00db3]
/home/scott/miniconda3/envs/mapping/bin/python(_PyFunction_Vectorcall+0x378)[0x5564b3a02198]
/home/scott/miniconda3/envs/mapping/bin/python(+0x1b0841)[0x5564b3a02841]
/home/scott/miniconda3/envs/mapping/bin/python(+0x12404d)[0x5564b397604d]
/home/scott/miniconda3/envs/mapping/bin/python(_PyObject_CallFunction_SizeT+0x99)[0x5564b39761f9]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0xa11fd)[0x7f56dddfe1fd]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0xa54d7)[0x7f56dde024d7]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0x8a2d5)[0x7f56ddde72d5]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0x8adc4)[0x7f56ddde7dc4]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0xa559a)[0x7f56dde0259a]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0xa5ac9)[0x7f56dde02ac9]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0x13f2b7)[0x7f56dde9c2b7]
/home/scott/miniconda3/envs/mapping/bin/python(+0x129082)[0x5564b397b082]
/home/scott/miniconda3/envs/mapping/bin/python(_PyEval_EvalFrameDefault+0x181e)[0x5564b3a1fb4e]
/home/scott/miniconda3/envs/mapping/bin/python(_PyEval_EvalCodeWithName+0x2c3)[0x5564b3a00db3]
/home/scott/miniconda3/envs/mapping/bin/python(_PyFunction_Vectorcall+0x378)[0x5564b3a02198]
/home/scott/miniconda3/envs/mapping/bin/python(+0x1b0841)[0x5564b3a02841]
/home/scott/miniconda3/envs/mapping/bin/python(+0x12404d)[0x5564b397604d]
/home/scott/miniconda3/envs/mapping/bin/python(_PyObject_CallFunction_SizeT+0x99)[0x5564b39761f9]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0xa11fd)[0x7f56dddfe1fd]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0xa54d7)[0x7f56dde024d7]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0x8a2d5)[0x7f56ddde72d5]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0x8adc4)[0x7f56ddde7dc4]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0xa559a)[0x7f56dde0259a]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0xa5ac9)[0x7f56dde02ac9]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0x13f2b7)[0x7f56dde9c2b7]
/home/scott/miniconda3/envs/mapping/bin/python(+0x129082)[0x5564b397b082]
/home/scott/miniconda3/envs/mapping/bin/python(_PyEval_EvalFrameDefault+0x4e03)[0x5564b3a23133]
/home/scott/miniconda3/envs/mapping/bin/python(_PyFunction_Vectorcall+0x1a6)[0x5564b3a01fc6]
/home/scott/miniconda3/envs/mapping/bin/python(_PyEval_EvalFrameDefault+0xa63)[0x5564b3a1ed93]
/home/scott/miniconda3/envs/mapping/bin/python(_PyEval_EvalCodeWithName+0x2c3)[0x5564b3a00db3]
/home/scott/miniconda3/envs/mapping/bin/python(_PyFunction_Vectorcall+0x378)[0x5564b3a02198]
/home/scott/miniconda3/envs/mapping/bin/python(+0x1b0841)[0x5564b3a02841]
/home/scott/miniconda3/envs/mapping/bin/python(+0x12404d)[0x5564b397604d]
/home/scott/miniconda3/envs/mapping/bin/python(_PyObject_CallFunction_SizeT+0x99)[0x5564b39761f9]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0xa11fd)[0x7f56dddfe1fd]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0xa54d7)[0x7f56dde024d7]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so(+0x8a2d5)[0x7f56ddde72d5]
/home/scott/miniconda3/envs/mapping/lib/python3.8/site-packages/numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so
Aborted (core dumped)
xr.show_versions
In [2]: xr.show_versions()
INSTALLED VERSIONS
------------------
commit: None
python: 3.8.12 | packaged by conda-forge | (default, Oct 12 2021, 21:59:51)
[GCC 9.4.0]
python-bits: 64
OS: Linux
OS-release: 3.10.0-1062.4.1.el7.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.10.6
libnetcdf: 4.7.4
xarray: 0.20.2
pandas: 1.1.0
numpy: 1.21.2
scipy: 1.5.3
netCDF4: 1.5.4
pydap: None
h5netcdf: 0.11.0
h5py: 3.2.1
Nio: None
zarr: 2.8.3
cftime: 1.2.1
nc_time_axis: None
PseudoNetCDF: None
rasterio: 1.2.6
cfgrib: None
iris: None
bottleneck: 1.3.2
dask: 2021.01.0
distributed: 2.20.0
matplotlib: 3.3.1
cartopy: 0.19.0.post1
seaborn: None
numbagg: None
fsspec: 0.6.3
cupy: 9.0.0
pint: 0.17
sparse: None
setuptools: 50.3.2
pip: 21.2.4
conda: 4.8.4
pytest: 6.2.4
IPython: 7.18.1
sphinx: 4.0.2
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Loading datasets of numpy string arrays leads to error and/or segfault 970619131 | |
888522258 | https://github.com/pydata/xarray/issues/5644#issuecomment-888522258 | https://api.github.com/repos/pydata/xarray/issues/5644 | IC_kwDOAMm_X8409cYS | scottstanie 8291800 | 2021-07-28T18:20:49Z | 2021-07-28T18:20:49Z | CONTRIBUTOR | As a temporary workout for my case, I'm just going to do
The thing I don't understand is that But it is acting like a shallow copy:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
`polyfit` with weights alters the DataArray in place 955043280 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
issue 3