issue_comments
10 rows where author_association = "CONTRIBUTOR" and user = 6181563 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, reactions, created_at (date), updated_at (date)
user 1
- jmunroe · 10 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 373806224 | https://github.com/pydata/xarray/issues/1981#issuecomment-373806224 | https://api.github.com/repos/pydata/xarray/issues/1981 | MDEyOklzc3VlQ29tbWVudDM3MzgwNjIyNA== | jmunroe 6181563 | 2018-03-16T18:34:19Z | 2018-03-16T18:34:19Z | CONTRIBUTOR | distributed |
{
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
use dask to open datasets in parallel 304201107 | |
| 373794415 | https://github.com/pydata/xarray/issues/1981#issuecomment-373794415 | https://api.github.com/repos/pydata/xarray/issues/1981 | MDEyOklzc3VlQ29tbWVudDM3Mzc5NDQxNQ== | jmunroe 6181563 | 2018-03-16T17:53:44Z | 2018-03-16T17:53:44Z | CONTRIBUTOR | For what's worth, this is exactly the workflow I use (https://github.com/OceansAus/cosima-cookbook) when opening a large number of netCDF files:
and then
and it appears to work well. Code snippets from cosima-cookbook/cosima_cookbook/netcdf_index.py |
{
"total_count": 3,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 1,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
use dask to open datasets in parallel 304201107 | |
| 340127569 | https://github.com/pydata/xarray/pull/1489#issuecomment-340127569 | https://api.github.com/repos/pydata/xarray/issues/1489 | MDEyOklzc3VlQ29tbWVudDM0MDEyNzU2OQ== | jmunroe 6181563 | 2017-10-28T00:46:58Z | 2017-10-28T00:46:58Z | CONTRIBUTOR | @shoyer Sound good. Thanks. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
lazily load dask arrays to dask data frames by calling to_dask_dataframe 245624267 | |
| 338118973 | https://github.com/pydata/xarray/pull/1489#issuecomment-338118973 | https://api.github.com/repos/pydata/xarray/issues/1489 | MDEyOklzc3VlQ29tbWVudDMzODExODk3Mw== | jmunroe 6181563 | 2017-10-20T06:36:43Z | 2017-10-20T06:36:43Z | CONTRIBUTOR | I don't understand how only test (TestDataArrayAndDataset::test_to_dask_dataframe_2D) can pass on TravisCI yet fail on Appveyor. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
lazily load dask arrays to dask data frames by calling to_dask_dataframe 245624267 | |
| 335719811 | https://github.com/pydata/xarray/pull/1489#issuecomment-335719811 | https://api.github.com/repos/pydata/xarray/issues/1489 | MDEyOklzc3VlQ29tbWVudDMzNTcxOTgxMQ== | jmunroe 6181563 | 2017-10-11T07:55:44Z | 2017-10-11T07:55:44Z | CONTRIBUTOR | Hi @shoyer and @jhamman . Thanks for your patience. Please let me know if there is still anything needed to be done on this PR. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
lazily load dask arrays to dask data frames by calling to_dask_dataframe 245624267 | |
| 335316753 | https://github.com/pydata/xarray/pull/1489#issuecomment-335316753 | https://api.github.com/repos/pydata/xarray/issues/1489 | MDEyOklzc3VlQ29tbWVudDMzNTMxNjc1Mw== | jmunroe 6181563 | 2017-10-09T23:28:45Z | 2017-10-09T23:28:45Z | CONTRIBUTOR | Hi @jhamman. Thanks for the nudge. I'll look at this again today and either a) just get it done or b) ask for help where needed. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
lazily load dask arrays to dask data frames by calling to_dask_dataframe 245624267 | |
| 327073701 | https://github.com/pydata/xarray/pull/1489#issuecomment-327073701 | https://api.github.com/repos/pydata/xarray/issues/1489 | MDEyOklzc3VlQ29tbWVudDMyNzA3MzcwMQ== | jmunroe 6181563 | 2017-09-05T05:19:08Z | 2017-09-05T05:19:08Z | CONTRIBUTOR | Sorry for the delay. I think this task is now complete. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
lazily load dask arrays to dask data frames by calling to_dask_dataframe 245624267 | |
| 322022140 | https://github.com/pydata/xarray/pull/1489#issuecomment-322022140 | https://api.github.com/repos/pydata/xarray/issues/1489 | MDEyOklzc3VlQ29tbWVudDMyMjAyMjE0MA== | jmunroe 6181563 | 2017-08-13T05:04:11Z | 2017-08-13T05:04:11Z | CONTRIBUTOR | I agree that using dask.dataframe.from_array and dask.dataframe.concat should work. Sorry I haven't had a chance to get back to this recently. I'll try to make the change early next week. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
lazily load dask arrays to dask data frames by calling to_dask_dataframe 245624267 | |
| 318246117 | https://github.com/pydata/xarray/pull/1489#issuecomment-318246117 | https://api.github.com/repos/pydata/xarray/issues/1489 | MDEyOklzc3VlQ29tbWVudDMxODI0NjExNw== | jmunroe 6181563 | 2017-07-27T03:08:35Z | 2017-07-27T03:08:35Z | CONTRIBUTOR | After working on this for a little while, I agree that this really should be a to_dask_dataframe() method. I'll make that change. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
lazily load dask arrays to dask data frames by calling to_dask_dataframe 245624267 | |
| 317917228 | https://github.com/pydata/xarray/issues/1462#issuecomment-317917228 | https://api.github.com/repos/pydata/xarray/issues/1462 | MDEyOklzc3VlQ29tbWVudDMxNzkxNzIyOA== | jmunroe 6181563 | 2017-07-26T01:09:05Z | 2017-07-26T01:09:05Z | CONTRIBUTOR | Today, I find myself in need exact functionality. Assuming no one else is working on it, I'll give a shot at trying to fix this. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Dataset.to_dataframe loads dask arrays into memory 237710101 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
issue 3