home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

15 rows where author_association = "CONTRIBUTOR" and user = 29051639 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: issue_url, reactions, created_at (date), updated_at (date)

issue 5

  • xr.DataArray.from_dask_dataframe feature 5
  • Feature request xarray.Dataset.from_dask_dataframe 4
  • Use xarray.open_dataset() for password-protected Opendap files 2
  • Ability to Pass Dask Arrays as `data` in DataArray Creation 2
  • corrected a minor spelling mistake 2

user 1

  • AyrtonB · 15 ✖

author_association 1

  • CONTRIBUTOR · 15 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
966198058 https://github.com/pydata/xarray/issues/1068#issuecomment-966198058 https://api.github.com/repos/pydata/xarray/issues/1068 IC_kwDOAMm_X845lwMq AyrtonB 29051639 2021-11-11T10:46:16Z 2021-11-11T10:46:16Z CONTRIBUTOR

Unfortunately not @zjans

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Use xarray.open_dataset() for password-protected Opendap files 186169975
864477138 https://github.com/pydata/xarray/issues/1068#issuecomment-864477138 https://api.github.com/repos/pydata/xarray/issues/1068 MDEyOklzc3VlQ29tbWVudDg2NDQ3NzEzOA== AyrtonB 29051639 2021-06-19T23:51:09Z 2021-06-19T23:51:09Z CONTRIBUTOR

I'm also getting the same error when running xr.open_dataset(store) even though I have accepted the EULA. Has anyone had success solving this?

I'm using pydap==3.2.2 and xarray==0.18.0, any help would be much appreciated!

```python import xarray as xr from pydap.client import open_url from pydap.cas.urs import setup_session

username = "my_username" password= "my_password"

url = 'https://goldsmr4.gesdisc.eosdis.nasa.gov/opendap/MERRA2/M2T1NXSLV.5.12.4/2016/06/MERRA2_400.tavg1_2d_slv_Nx.20160601.nc4'

session = setup_session(username, password, check_url=url) pydap_ds = open_url(url, session=session)

store = xr.backends.PydapDataStore(pydap_ds) ds = xr.open_dataset(store) ```

```html HTTPError: 302 Found

<html><head> <title>302 Found</title> </head><body>

Found

The document has moved here.

</body></html>

```

{
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Use xarray.open_dataset() for password-protected Opendap files 186169975
797555413 https://github.com/pydata/xarray/pull/4659#issuecomment-797555413 https://api.github.com/repos/pydata/xarray/issues/4659 MDEyOklzc3VlQ29tbWVudDc5NzU1NTQxMw== AyrtonB 29051639 2021-03-12T15:17:16Z 2021-03-12T15:17:16Z CONTRIBUTOR

From what I can gather there are more serious back-end considerations needed before this can be progressed.

Personally, I've been monkey-patching this code in which has solved my particular use-case, hopefully it's helpful for yours.

```python import xarray as xr import pandas as pd import numpy as np

import dask.dataframe as dd from dask.distributed import Client

import numcodecs from types import ModuleType from datetime import timedelta

from dask.dataframe.core import DataFrame as ddf from numbers import Number from typing import Any, Union, Sequence, Tuple, Mapping, Hashable, Dict, Optional, Set

from xarray.core import dtypes, groupby, rolling, resample, weighted, utils# from xarray.core.accessor_dt import CombinedDatetimelikeAccessor from xarray.core.variable import Variable, IndexVariable from xarray.core.merge import PANDAS_TYPES from xarray.core.variable import NON_NUMPY_SUPPORTED_ARRAY_TYPES, IS_NEP18_ACTIVE, _maybe_wrap_data, _possibly_convert_objects from xarray.core.dataarray import _check_data_shape, _infer_coords_and_dims, _extract_indexes_from_coords from xarray.core.common import ImplementsDatasetReduce, DataWithCoords

def as_compatible_data(data, fastpath=False): """Prepare and wrap data to put in a Variable. - If data does not have the necessary attributes, convert it to ndarray. - If data has dtype=datetime64, ensure that it has ns precision. If it's a pandas.Timestamp, convert it to datetime64. - If data is already a pandas or xarray object (other than an Index), just use the values. Finally, wrap it up with an adapter if necessary. """ if fastpath and getattr(data, "ndim", 0) > 0: # can't use fastpath (yet) for scalars return _maybe_wrap_data(data)

# *** Start of monkey-patch changes ***
if isinstance(data, (ddf,)):
    return data.to_dask_array(lengths=True)
# *** End of monkey-patch changes ***

if isinstance(data, Variable):
    return data.data

if isinstance(data, NON_NUMPY_SUPPORTED_ARRAY_TYPES):
    return _maybe_wrap_data(data)
if isinstance(data, tuple):
    data = utils.to_0d_object_array(data)
if isinstance(data, pd.Timestamp):
    # TODO: convert, handle datetime objects, too
    data = np.datetime64(data.value, "ns")
if isinstance(data, timedelta):
    data = np.timedelta64(getattr(data, "value", data), "ns")
# we don't want nested self-described arrays
data = getattr(data, "values", data)
if isinstance(data, np.ma.MaskedArray):
    mask = np.ma.getmaskarray(data)
    if mask.any():
        dtype, fill_value = dtypes.maybe_promote(data.dtype)
        data = np.asarray(data, dtype=dtype)
        data[mask] = fill_value
    else:
        data = np.asarray(data)
if not isinstance(data, np.ndarray):
    if hasattr(data, "__array_function__"):
        if IS_NEP18_ACTIVE:
            return data
        else:
            raise TypeError(
                "Got an NumPy-like array type providing the "
                "__array_function__ protocol but NEP18 is not enabled. "
                "Check that numpy >= v1.16 and that the environment "
                'variable "NUMPY_EXPERIMENTAL_ARRAY_FUNCTION" is set to '
                '"1"'
            )
# validate whether the data is valid data types.
data = np.asarray(data)
if isinstance(data, np.ndarray):
    if data.dtype.kind == "O":
        data = _possibly_convert_objects(data)
    elif data.dtype.kind == "M":
        data = _possibly_convert_objects(data)
    elif data.dtype.kind == "m":
        data = _possibly_convert_objects(data)

return _maybe_wrap_data(data)

xr.core.variable.as_compatible_data = as_compatible_data

class DataArray(xr.core.dataarray.DataArray):

_cache: Dict[str, Any]
_coords: Dict[Any, Variable]
_indexes: Optional[Dict[Hashable, pd.Index]]
_name: Optional[Hashable]
_variable: Variable

__slots__ = (
    "_cache",
    "_coords",
    "_file_obj",
    "_indexes",
    "_name",
    "_variable"
)

_groupby_cls = groupby.DataArrayGroupBy
_rolling_cls = rolling.DataArrayRolling
_coarsen_cls = rolling.DataArrayCoarsen
_resample_cls = resample.DataArrayResample
_weighted_cls = weighted.DataArrayWeighted

dt = utils.UncachedAccessor(CombinedDatetimelikeAccessor)

def __init__(
    self,
    data: Any = dtypes.NA,
    coords: Union[Sequence[Tuple], Mapping[Hashable, Any], None] = None,
    dims: Union[Hashable, Sequence[Hashable], None] = None,
    name: Hashable = None,
    attrs: Mapping = None,
    # internal parameters
    indexes: Dict[Hashable, pd.Index] = None,
    fastpath: bool = False,
):
    if fastpath:
        variable = data
        assert dims is None
        assert attrs is None
    else:
        # try to fill in arguments from data if they weren't supplied
        if coords is None:

            if isinstance(data, DataArray):
                coords = data.coords
            elif isinstance(data, pd.Series):
                coords = [data.index]
            elif isinstance(data, pd.DataFrame):
                coords = [data.index, data.columns]
            elif isinstance(data, (pd.Index, IndexVariable)):
                coords = [data]
            elif isinstance(data, pdcompat.Panel):
                coords = [data.items, data.major_axis, data.minor_axis]

        if dims is None:
            dims = getattr(data, "dims", getattr(coords, "dims", None))
        if name is None:
            name = getattr(data, "name", None)
        if attrs is None and not isinstance(data, PANDAS_TYPES):
            attrs = getattr(data, "attrs", None)

        # *** Start of monkey-patch changes ***
        def compute_delayed_tuple_elements(tuple_):
            tuple_ = tuple(
                [
                    elem.compute() if hasattr(elem, "compute") else elem
                    for elem in tuple_
                ]
            )

            return tuple_

        shape = compute_delayed_tuple_elements(data.shape)
        coords = compute_delayed_tuple_elements(coords)

        data = _check_data_shape(data, coords, dims)
        data = as_compatible_data(data)
        coords, dims = _infer_coords_and_dims(shape, coords, dims)
        # *** End of monkey-patch changes ***

        variable = Variable(dims, data, attrs, fastpath=True)
        indexes = dict(
            _extract_indexes_from_coords(coords)
        )  # needed for to_dataset

    # These fully describe a DataArray
    self._variable = variable
    assert isinstance(coords, dict)
    self._coords = coords
    self._name = name

    # TODO(shoyer): document this argument, once it becomes part of the
    # public interface.
    self._indexes = indexes

    self._file_obj = None

@classmethod
def from_dask_dataframe(cls, ddf, index_name: str = "", columns_name: str = ""):
    """Convert a pandas.DataFrame into an xarray.DataArray
    This method will produce a DataArray from a Dask DataFrame.
    Dimensions are loaded into memory but the data itself remains
    a Dask Array. The dataframe you pass can contain only one data-type.
    Parameters
    ----------
    ddf: DataFrame
        Dask DataFrame from which to copy data and indices.
    index_name: str
        Name of the dimension that will be created from the index
    columns_name: str
        Name of the dimension that will be created from the columns
    Returns
    -------
    New DataArray.
    See also
    --------
    xarray.DataSet.from_dataframe
    xarray.DataArray.from_series
    pandas.DataFrame.to_xarray
    """
    assert len(set(ddf.dtypes)) == 1, "Each variable can include only one data-type"

    def extract_dim_name(df, dim="index"):
        if getattr(ddf, dim).name is None:
            getattr(ddf, dim).name = dim

        dim_name = getattr(ddf, dim).name

        return dim_name

    if index_name == "":
        index_name = extract_dim_name(ddf, "index")
    if columns_name == "":
        columns_name = extract_dim_name(ddf, "columns")

    dims = dict.fromkeys([index_name, columns_name], df.shape)
    da = cls(ddf, coords=[ddf.index, ddf.columns], dims=dims)

    return da

xr.core.dataarray.DataArray = DataArray xr.DataArray = DataArray

def _maybe_chunk( name, var, chunks=None, token=None, lock=None, name_prefix="xarray-", overwrite_encoded_chunks=False, ): from dask.base import tokenize

if chunks is not None:
    chunks = {dim: chunks[dim] for dim in var.dims if dim in chunks}
if var.ndim:
    # when rechunking by different amounts, make sure dask names change
    # by provinding chunks as an input to tokenize.
    # subtle bugs result otherwise. see GH3350
    token2 = tokenize(name, token if token else var._data, chunks)
    name2 = f"{name_prefix}{name}-{token2}"
    var = var.chunk(chunks, name=name2, lock=lock)

    if overwrite_encoded_chunks and var.chunks is not None:
        var.encoding["chunks"] = tuple(x[0] for x in var.chunks)
    return var
else:
    return var

class Dataset(xr.Dataset): """A multi-dimensional, in memory, array database.

A dataset resembles an in-memory representation of a NetCDF file,
and consists of variables, coordinates and attributes which
together form a self describing dataset.

Dataset implements the mapping interface with keys given by variable
names and values given by DataArray objects for each variable name.

One dimensional variables with name equal to their dimension are
index coordinates used for label based indexing.

To load data from a file or file-like object, use the `open_dataset`
function.

Parameters
----------
data_vars : dict-like, optional
    A mapping from variable names to :py:class:`~xarray.DataArray`
    objects, :py:class:`~xarray.Variable` objects or to tuples of
    the form ``(dims, data[, attrs])`` which can be used as
    arguments to create a new ``Variable``. Each dimension must
    have the same length in all variables in which it appears.

    The following notations are accepted:

    - mapping {var name: DataArray}
    - mapping {var name: Variable}
    - mapping {var name: (dimension name, array-like)}
    - mapping {var name: (tuple of dimension names, array-like)}
    - mapping {dimension name: array-like}
      (it will be automatically moved to coords, see below)

    Each dimension must have the same length in all variables in
    which it appears.
coords : dict-like, optional
    Another mapping in similar form as the `data_vars` argument,
    except the each item is saved on the dataset as a "coordinate".
    These variables have an associated meaning: they describe
    constant/fixed/independent quantities, unlike the
    varying/measured/dependent quantities that belong in
    `variables`. Coordinates values may be given by 1-dimensional
    arrays or scalars, in which case `dims` do not need to be
    supplied: 1D arrays will be assumed to give index values along
    the dimension with the same name.

    The following notations are accepted:

    - mapping {coord name: DataArray}
    - mapping {coord name: Variable}
    - mapping {coord name: (dimension name, array-like)}
    - mapping {coord name: (tuple of dimension names, array-like)}
    - mapping {dimension name: array-like}
      (the dimension name is implicitly set to be the same as the
      coord name)

    The last notation implies that the coord name is the same as
    the dimension name.

attrs : dict-like, optional
    Global attributes to save on this dataset.

Examples
--------
Create data:

>>> np.random.seed(0)
>>> temperature = 15 + 8 * np.random.randn(2, 2, 3)
>>> precipitation = 10 * np.random.rand(2, 2, 3)
>>> lon = [[-99.83, -99.32], [-99.79, -99.23]]
>>> lat = [[42.25, 42.21], [42.63, 42.59]]
>>> time = pd.date_range("2014-09-06", periods=3)
>>> reference_time = pd.Timestamp("2014-09-05")

Initialize a dataset with multiple dimensions:

>>> ds = xr.Dataset(
...     data_vars=dict(
...         temperature=(["x", "y", "time"], temperature),
...         precipitation=(["x", "y", "time"], precipitation),
...     ),
...     coords=dict(
...         lon=(["x", "y"], lon),
...         lat=(["x", "y"], lat),
...         time=time,
...         reference_time=reference_time,
...     ),
...     attrs=dict(description="Weather related data."),
... )
>>> ds
<xarray.Dataset>
Dimensions:         (time: 3, x: 2, y: 2)
Coordinates:
    lon             (x, y) float64 -99.83 -99.32 -99.79 -99.23
    lat             (x, y) float64 42.25 42.21 42.63 42.59
  * time            (time) datetime64[ns] 2014-09-06 2014-09-07 2014-09-08
    reference_time  datetime64[ns] 2014-09-05
Dimensions without coordinates: x, y
Data variables:
    temperature     (x, y, time) float64 29.11 18.2 22.83 ... 18.28 16.15 26.63
    precipitation   (x, y, time) float64 5.68 9.256 0.7104 ... 7.992 4.615 7.805
Attributes:
    description:  Weather related data.

Find out where the coldest temperature was and what values the
other variables had:

>>> ds.isel(ds.temperature.argmin(...))
<xarray.Dataset>
Dimensions:         ()
Coordinates:
    lon             float64 -99.32
    lat             float64 42.21
    time            datetime64[ns] 2014-09-08
    reference_time  datetime64[ns] 2014-09-05
Data variables:
    temperature     float64 7.182
    precipitation   float64 8.326
Attributes:
    description:  Weather related data.
"""

__slots__ = ['foo']

def __init__(self, *args, **kwargs):
    super().__init__(*args, **kwargs)

def chunk(
    self,
    chunks: Union[None, Number, str, Mapping[Hashable, Union[None, Number, str, Tuple[Number, ...]]],] = None,
    name_prefix: str = "xarray-",
    token: str = None,
    lock: bool = False,
) -> "Dataset":
    """Coerce all arrays in this dataset into dask arrays with the given
    chunks.

    Non-dask arrays in this dataset will be converted to dask arrays. Dask
    arrays will be rechunked to the given chunk sizes.

    If neither chunks is not provided for one or more dimensions, chunk
    sizes along that dimension will not be updated; non-dask arrays will be
    converted into dask arrays with a single block.

    Parameters
    ----------
    chunks : int, 'auto' or mapping, optional
        Chunk sizes along each dimension, e.g., ``5`` or
        ``{"x": 5, "y": 5}``.
    name_prefix : str, optional
        Prefix for the name of any new dask arrays.
    token : str, optional
        Token uniquely identifying this dataset.
    lock : optional
        Passed on to :py:func:`dask.array.from_array`, if the array is not
        already as dask array.

    Returns
    -------
    chunked : xarray.Dataset
    """

    if isinstance(chunks, (Number, str)):
        chunks = dict.fromkeys(self.dims, chunks)

    if isinstance(chunks, (tuple, list)):
        chunks = dict(zip(self.dims, chunks))

    if chunks is not None:
        bad_dims = chunks.keys() - self.dims.keys()
        if bad_dims:
            raise ValueError("some chunks keys are not dimensions on this " "object: %s" % bad_dims)

    variables = {k: _maybe_chunk(k, v, chunks, token, lock, name_prefix) for k, v in self.variables.items()}
    return self._replace(variables)

xr.core.dataarray.Dataset = Dataset xr.Dataset = Dataset ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xr.DataArray.from_dask_dataframe feature 758606082
740032261 https://github.com/pydata/xarray/pull/4659#issuecomment-740032261 https://api.github.com/repos/pydata/xarray/issues/4659 MDEyOklzc3VlQ29tbWVudDc0MDAzMjI2MQ== AyrtonB 29051639 2020-12-07T16:36:36Z 2020-12-07T16:36:36Z CONTRIBUTOR

I've added dask_dataframe_type = (dask.dataframe.core.DataFrame,) to pycompat but now see: ImportError: cannot import name 'dask_dataframe_type' despite it being in there

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xr.DataArray.from_dask_dataframe feature 758606082
740020080 https://github.com/pydata/xarray/pull/4659#issuecomment-740020080 https://api.github.com/repos/pydata/xarray/issues/4659 MDEyOklzc3VlQ29tbWVudDc0MDAyMDA4MA== AyrtonB 29051639 2020-12-07T16:17:25Z 2020-12-07T16:17:25Z CONTRIBUTOR

That makes sense, thanks @keewis

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xr.DataArray.from_dask_dataframe feature 758606082
740002632 https://github.com/pydata/xarray/pull/4659#issuecomment-740002632 https://api.github.com/repos/pydata/xarray/issues/4659 MDEyOklzc3VlQ29tbWVudDc0MDAwMjYzMg== AyrtonB 29051639 2020-12-07T15:49:00Z 2020-12-07T15:49:00Z CONTRIBUTOR

Thanks, yes I need to load the library for type-hinting and type checks.

When you say dask_compat is that the same as dask_array_compat? How would I use them instead of Dask, could I use say from dask_compat.dataframe.core import DataFrame as ddf instead of from dask.dataframe.core import DataFrame as ddf?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xr.DataArray.from_dask_dataframe feature 758606082
739991914 https://github.com/pydata/xarray/issues/3929#issuecomment-739991914 https://api.github.com/repos/pydata/xarray/issues/3929 MDEyOklzc3VlQ29tbWVudDczOTk5MTkxNA== AyrtonB 29051639 2020-12-07T15:32:01Z 2020-12-07T15:32:01Z CONTRIBUTOR

I've added a PR for the new feature but it's currently failing tests as the test-suite doesn't seem to have Dask installed. Any advice on how to get this PR prepared for merging would be appreciated.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Feature request xarray.Dataset.from_dask_dataframe 593029940
739988806 https://github.com/pydata/xarray/pull/4659#issuecomment-739988806 https://api.github.com/repos/pydata/xarray/issues/4659 MDEyOklzc3VlQ29tbWVudDczOTk4ODgwNg== AyrtonB 29051639 2020-12-07T15:27:10Z 2020-12-07T15:27:10Z CONTRIBUTOR

During testing I'm currently encountering the issue: ModuleNotFoundError: No module named 'dask'

How should testing of dask DataArrays be approached?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xr.DataArray.from_dask_dataframe feature 758606082
739904265 https://github.com/pydata/xarray/issues/3929#issuecomment-739904265 https://api.github.com/repos/pydata/xarray/issues/3929 MDEyOklzc3VlQ29tbWVudDczOTkwNDI2NQ== AyrtonB 29051639 2020-12-07T13:01:57Z 2020-12-07T13:02:20Z CONTRIBUTOR

One of the things I was hoping to include in my approach is the preservation of the column dimension names, however if I was to use Dataset.to_array it would just be called variable. This is pretty minor though and a wrapper could be used to get around it.

Thanks for the advice @shoyer, I reached a similar opinion and so have been working on the dim compute route.

The issue is that a Dask array's shape uses np.nan for uncomputed dimensions, rather than leaving a delayed object like the Dask dataframe's shape. I looked into returning the dask dataframe rather than dask array but this didn't feel like it fit with the rest of the code and produced another issue as dask dataframes don't have a dtype attribute. I'll continue to look into alternatives.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Feature request xarray.Dataset.from_dask_dataframe 593029940
739338154 https://github.com/pydata/xarray/pull/4653#issuecomment-739338154 https://api.github.com/repos/pydata/xarray/issues/4653 MDEyOklzc3VlQ29tbWVudDczOTMzODE1NA== AyrtonB 29051639 2020-12-05T19:18:10Z 2020-12-05T19:18:10Z CONTRIBUTOR

Nothing like a transient error to keep everyone on their toes. Thanks again!

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  corrected a minor spelling mistake 757751542
739336219 https://github.com/pydata/xarray/pull/4653#issuecomment-739336219 https://api.github.com/repos/pydata/xarray/issues/4653 MDEyOklzc3VlQ29tbWVudDczOTMzNjIxOQ== AyrtonB 29051639 2020-12-05T19:10:27Z 2020-12-05T19:10:27Z CONTRIBUTOR

Thanks @dcherian, out of interest what would I have had to have done to remove that test failure?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  corrected a minor spelling mistake 757751542
739334281 https://github.com/pydata/xarray/issues/3929#issuecomment-739334281 https://api.github.com/repos/pydata/xarray/issues/3929 MDEyOklzc3VlQ29tbWVudDczOTMzNDI4MQ== AyrtonB 29051639 2020-12-05T18:52:49Z 2020-12-05T18:52:49Z CONTRIBUTOR

For context this is the function I'm using to convert the Dask DataFrame to a DataArray.

```python def from_dask_dataframe(df, index_name=None, columns_name=None): def extract_dim_name(df, dim='index'): if getattr(df, dim).name is None: getattr(df, dim).name = dim

    dim_name = getattr(df, dim).name

    return dim_name

if index_name is None:
    index_name = extract_dim_name(df, 'index')
if columns_name is None:
    columns_name = extract_dim_name(df, 'columns')

da = xr.DataArray(df, coords=[df.index, df.columns], dims=[index_name, columns_name])

return da

df.index.name = 'datetime' df.columns.name = 'fueltypes'

da = from_dask_dataframe(df) ```

I'm also conscious that my question is different to @raybellwaves' as they were asking about Dataset creation and I'm interested in creating a DataArray which requires different functionality. I'm assuming this is the correct place to post though as @keewis closed my issue and linked to this one.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Feature request xarray.Dataset.from_dask_dataframe 593029940
739330830 https://github.com/pydata/xarray/issues/4650#issuecomment-739330830 https://api.github.com/repos/pydata/xarray/issues/4650 MDEyOklzc3VlQ29tbWVudDczOTMzMDgzMA== AyrtonB 29051639 2020-12-05T18:23:10Z 2020-12-05T18:23:10Z CONTRIBUTOR

Have started to implement this but will continue the discussion in 3929

{
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Ability to Pass Dask Arrays as `data` in DataArray Creation 757660307
739330558 https://github.com/pydata/xarray/issues/3929#issuecomment-739330558 https://api.github.com/repos/pydata/xarray/issues/3929 MDEyOklzc3VlQ29tbWVudDczOTMzMDU1OA== AyrtonB 29051639 2020-12-05T18:20:33Z 2020-12-05T18:20:33Z CONTRIBUTOR

I've been trying to implement this and have managed to create a xarray.core.dataarray.DataArray object from a dask dataframe. The issue I'm encountering is that whilst I've enabled it to pass the coords and dims checks (by computing any elements in the shape or coords tuples with .compute), the variable that is assigned to self._variable still has an NaN in the shape.

The modifications I've made so far are adding the following above line 400 in dataarray.py: ```python shape = tuple([ dim_size.compute() if hasattr(dim_size, 'compute') else dim_size for dim_size in data.shape ])

coords = tuple([ coord.compute() if hasattr(coord, 'compute') else coord for coord in coords ]) ```

and on line 403 by replacing data.shape with shape that was created in the previous step.

The issue I have is that when I then want to use the DataArray and do something like da.sel(datetime='2020-01-01') I get the error: ```python


ValueError Traceback (most recent call last) <ipython-input-23-5d739a721388> in <module> ----> 1 da.sel(datetime='2020')

~\anaconda3\envs\DataHub\lib\site-packages\xarray\core\dataarray.py in sel(self, indexers, method, tolerance, drop, **indexers_kwargs) 1219 1220 """ -> 1221 ds = self._to_temp_dataset().sel( 1222 indexers=indexers, 1223 drop=drop,

~\anaconda3\envs\DataHub\lib\site-packages\xarray\core\dataarray.py in _to_temp_dataset(self) 499 500 def _to_temp_dataset(self) -> Dataset: --> 501 return self._to_dataset_whole(name=_THIS_ARRAY, shallow_copy=False) 502 503 def _from_temp_dataset(

~\anaconda3\envs\DataHub\lib\site-packages\xarray\core\dataarray.py in _to_dataset_whole(self, name, shallow_copy) 551 552 coord_names = set(self._coords) --> 553 dataset = Dataset._construct_direct(variables, coord_names, indexes=indexes) 554 return dataset 555

~\anaconda3\envs\DataHub\lib\site-packages\xarray\core\dataset.py in _construct_direct(cls, variables, coord_names, dims, attrs, indexes, encoding, file_obj) 959 """ 960 if dims is None: --> 961 dims = calculate_dimensions(variables) 962 obj = object.new(cls) 963 obj._variables = variables

~\anaconda3\envs\DataHub\lib\site-packages\xarray\core\dataset.py in calculate_dimensions(variables) 207 "conflicting sizes for dimension %r: " 208 "length %s on %r and length %s on %r" --> 209 % (dim, size, k, dims[dim], last_used[dim]) 210 ) 211 return dims

ValueError: conflicting sizes for dimension 'datetime': length nan on <this-array> and length 90386 on 'datetime' ```

This occurs due to the construction of Variable(dims, data, attrs, fastpath=True) on line 404, which converts the data to a numpy array on line 244 of variable.py.

I'm assuming there's an alternative way to construct Variable that is dask friendly but I couldn't find anything searching around, including areas that are using dask like open_dataset with chunks. Any advice on how to get around this would be much appreciated!

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Feature request xarray.Dataset.from_dask_dataframe 593029940
739322106 https://github.com/pydata/xarray/issues/4650#issuecomment-739322106 https://api.github.com/repos/pydata/xarray/issues/4650 MDEyOklzc3VlQ29tbWVudDczOTMyMjEwNg== AyrtonB 29051639 2020-12-05T17:09:23Z 2020-12-05T17:09:23Z CONTRIBUTOR

Thanks, I saw dask/dask#6058 but missed #3929.

If I'm understanding you correctly there should be no problem passing a dask array for the data parameters its just the dims/coords. If the _infer_coords_and_dims method on DataArrays was adapted to check for any dask.delayed elements and compute them would that enable this functionality or are there additional blockers? Thanks for your help with this.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Ability to Pass Dask Arrays as `data` in DataArray Creation 757660307

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 482.081ms · About: xarray-datasette