issue_comments
3 rows where author_association = "CONTRIBUTOR" and issue = 882876804 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Dask-friendly nan check in xr.corr() and xr.cov() · 3 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 848612330 | https://github.com/pydata/xarray/pull/5284#issuecomment-848612330 | https://api.github.com/repos/pydata/xarray/issues/5284 | MDEyOklzc3VlQ29tbWVudDg0ODYxMjMzMA== | AndrewILWilliams 56925856 | 2021-05-26T09:19:50Z | 2021-05-26T09:19:50Z | CONTRIBUTOR | Hey both, I've added a test to check that dask doesn't compute when calling either @dcherian, regarding the |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Dask-friendly nan check in xr.corr() and xr.cov() 882876804 | |
| 838231568 | https://github.com/pydata/xarray/pull/5284#issuecomment-838231568 | https://api.github.com/repos/pydata/xarray/issues/5284 | MDEyOklzc3VlQ29tbWVudDgzODIzMTU2OA== | AndrewILWilliams 56925856 | 2021-05-11T10:28:08Z | 2021-05-12T20:45:00Z | CONTRIBUTOR | Thanks for that @dcherian ! I didn't know you could use print debugging on chunked operations like this! One thing actually: If I change ``` def _get_valid_values(da, other): da1, da2 = xr.align(da, other, join="outer", copy=False)
```
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Dask-friendly nan check in xr.corr() and xr.cov() 882876804 | |
| 837032429 | https://github.com/pydata/xarray/pull/5284#issuecomment-837032429 | https://api.github.com/repos/pydata/xarray/issues/5284 | MDEyOklzc3VlQ29tbWVudDgzNzAzMjQyOQ== | AndrewILWilliams 56925856 | 2021-05-10T17:44:29Z | 2021-05-10T17:44:29Z | CONTRIBUTOR | Hi @dcherian , just thinking about your suggestion for using ```python3 da_a = xr.DataArray( np.array([[1, 2, 3, 4], [1, 0.1, 0.2, 0.3], [2, 3.2, 0.6, 1.8]]), dims=("space", "time"), coords=[ ("space", ["IA", "IL", "IN"]), ("time", pd.date_range("2000-01-01", freq="1D", periods=4)), ], ).chunk({'time':1}) da_b = xr.DataArray( np.array([[0.2, 0.4, 0.6, 2], [15, 10, 5, 1], [1, 3.2, np.nan, 1.8]]), dims=("space", "time"), coords=[ ("space", ["IA", "IL", "IN"]), ("time", pd.date_range("2000-01-01", freq="1D", periods=4)), ], ).chunk({'time':1}) print(da_a)
print(da_b)
Define function to use in map_blocksdef _get_valid_values(da, other): da1, da2 = xr.align(da, other, join="inner", copy=False)
testoutp = da_a.map_blocks(_get_valid_values, args=[da_b]) print(outp.compute())
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Dask-friendly nan check in xr.corr() and xr.cov() 882876804 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1