issue_comments
3 rows where author_association = "CONTRIBUTOR" and issue = 822320976 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- KeyError when selecting "nearest" data with given tolerance · 3 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1110101560 | https://github.com/pydata/xarray/issues/4995#issuecomment-1110101560 | https://api.github.com/repos/pydata/xarray/issues/4995 | IC_kwDOAMm_X85CKs44 | snowman2 8699967 | 2022-04-26T18:09:18Z | 2022-04-26T18:12:14Z | CONTRIBUTOR | Example using ```python import numpy import xarray da = xarray.DataArray(
numpy.arange(25).reshape(5, 5),
coords={"x": numpy.arange(5), "y": numpy.arange(5)},
dims=("x", "y"),
)
tgt_x = numpy.linspace(0, 4, num=5) + 0.5
tgt_y = numpy.linspace(0, 4, num=5) + 0.5
da = da.reindex(
x=tgt_x, y=tgt_y, method="nearest", tolerance=0.2, fill_value=numpy.nan
).sel(
x=xarray.DataArray(tgt_x, dims="points"),
y=xarray.DataArray(tgt_y, dims="points"),
)
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
KeyError when selecting "nearest" data with given tolerance 822320976 | |
799047819 | https://github.com/pydata/xarray/issues/4995#issuecomment-799047819 | https://api.github.com/repos/pydata/xarray/issues/4995 | MDEyOklzc3VlQ29tbWVudDc5OTA0NzgxOQ== | observingClouds 43613877 | 2021-03-15T02:28:51Z | 2021-03-15T02:28:51Z | CONTRIBUTOR | Thanks @dcherian, this is doing the job. I'll close this issue as there seems to be no need to implement this into the |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
KeyError when selecting "nearest" data with given tolerance 822320976 | |
791019238 | https://github.com/pydata/xarray/issues/4995#issuecomment-791019238 | https://api.github.com/repos/pydata/xarray/issues/4995 | MDEyOklzc3VlQ29tbWVudDc5MTAxOTIzOA== | observingClouds 43613877 | 2021-03-04T23:10:11Z | 2021-03-04T23:10:11Z | CONTRIBUTOR | Introducing a However, the shortcoming that I see in using a ds = xr.Dataset()
ds['data1'] = xr.DataArray(np.array([1,2,3,4,5], dtype=int), dims=["lat"], coords={'lat':[10,20,30,50,60]})
ds['data2'] = xr.DataArray(np.array([1,2,3,4,5], dtype=float), dims=["lat"], coords={'lat':[10,20,30,50,60]})
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
KeyError when selecting "nearest" data with given tolerance 822320976 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 2