home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

4 rows where author_association = "CONTRIBUTOR" and issue = 785329941 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: reactions, created_at (date), updated_at (date)

user 2

  • aaronspring 3
  • willirath 1

issue 1

  • Improve performance of xarray.corr() on big datasets · 4 ✖

author_association 1

  • CONTRIBUTOR · 4 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
760114285 https://github.com/pydata/xarray/issues/4804#issuecomment-760114285 https://api.github.com/repos/pydata/xarray/issues/4804 MDEyOklzc3VlQ29tbWVudDc2MDExNDI4NQ== willirath 5700886 2021-01-14T10:44:19Z 2021-01-14T10:44:19Z CONTRIBUTOR

I'd also add that https://github.com/pydata/xarray/blob/master/xarray/core/computation.py#L1320_L1330 which is essentially python ((x - x.mean()) * (y - y.mean())).mean() is inferior to python (x * y).mean() - x.mean() * y.mean() because it leads to Dask holding all chunks of x in memory (see, e.g., https://github.com/dask/dask/issues/6674 for details).

{
    "total_count": 2,
    "+1": 2,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Improve performance of xarray.corr() on big datasets 785329941
760025539 https://github.com/pydata/xarray/issues/4804#issuecomment-760025539 https://api.github.com/repos/pydata/xarray/issues/4804 MDEyOklzc3VlQ29tbWVudDc2MDAyNTUzOQ== aaronspring 12237157 2021-01-14T08:44:22Z 2021-01-14T08:44:22Z CONTRIBUTOR

Thanks for the suggestion with xr.align.

my speculation is that xs.pearson_r is a bit faster because we first write the whole function in numpy and then pass it through xr.apply_ufunc. I think therefore it only works for xr but not dask.da

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Improve performance of xarray.corr() on big datasets 785329941
759767957 https://github.com/pydata/xarray/issues/4804#issuecomment-759767957 https://api.github.com/repos/pydata/xarray/issues/4804 MDEyOklzc3VlQ29tbWVudDc1OTc2Nzk1Nw== aaronspring 12237157 2021-01-13T22:04:38Z 2021-01-13T22:04:38Z CONTRIBUTOR

Your function from the notebook could also easily implement the builtin weighted function

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Improve performance of xarray.corr() on big datasets 785329941
759766466 https://github.com/pydata/xarray/issues/4804#issuecomment-759766466 https://api.github.com/repos/pydata/xarray/issues/4804 MDEyOklzc3VlQ29tbWVudDc1OTc2NjQ2Ng== aaronspring 12237157 2021-01-13T22:01:49Z 2021-01-13T22:01:49Z CONTRIBUTOR

We implemented xr.corr as xr.pearson_r in https://xskillscore.readthedocs.io/en/stable/api/xskillscore.pearson_r.html#xskillscore.pearson_r and it’s ~30% faster than xr.corr see #4768

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Improve performance of xarray.corr() on big datasets 785329941

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 14.648ms · About: xarray-datasette