issue_comments
8 rows where author_association = "CONTRIBUTOR" and issue = 647804004 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: reactions, created_at (date), updated_at (date)
issue 1
- Xarray open_mfdataset with engine Zarr · 8 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
696766963 | https://github.com/pydata/xarray/pull/4187#issuecomment-696766963 | https://api.github.com/repos/pydata/xarray/issues/4187 | MDEyOklzc3VlQ29tbWVudDY5Njc2Njk2Mw== | martindurant 6042212 | 2020-09-22T14:41:41Z | 2020-09-22T14:41:41Z | CONTRIBUTOR | Note that zarr.open* now works with fsspec URLs (in master) |
{ "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray open_mfdataset with engine Zarr 647804004 | |
652702644 | https://github.com/pydata/xarray/pull/4187#issuecomment-652702644 | https://api.github.com/repos/pydata/xarray/issues/4187 | MDEyOklzc3VlQ29tbWVudDY1MjcwMjY0NA== | weiji14 23487320 | 2020-07-01T23:59:32Z | 2020-07-03T04:23:34Z | CONTRIBUTOR |
Just wanted to mention that two of the reviewers in the last PR (see https://github.com/pydata/xarray/pull/4003#issuecomment-619644606 and https://github.com/pydata/xarray/pull/4003#issuecomment-620169860) seemed in favour of deprecating
Yes exactly, time does fly (half a year has gone by already!). Currently I'm trying to piggyback Zarr into
Thanks for chipping in @Carreau! I'm sure the community will have some useful suggestions. Just cross-referencing https://zarr-developers.github.io/zarr/specs/2019/06/19/zarr-v3-update.html so others can get a better feel for where things are at. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray open_mfdataset with engine Zarr 647804004 | |
652260859 | https://github.com/pydata/xarray/pull/4187#issuecomment-652260859 | https://api.github.com/repos/pydata/xarray/issues/4187 | MDEyOklzc3VlQ29tbWVudDY1MjI2MDg1OQ== | weiji14 23487320 | 2020-07-01T08:02:14Z | 2020-07-01T22:23:27Z | CONTRIBUTOR |
Depends on which line in the Zen of Python you want to follow - "Simple is better than complex", or "There should be one-- and preferably only one --obvious way to do it". From a maintenance perspective, it's balancing the cost of a deprecation cycle vs writing code that tests both instances I guess.
These are some pretty good ideas. I also wonder if there's a way to mimic the dataset identifiers like in rasterio, something like Counter-argument would be that the cyclomatic complexity of |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray open_mfdataset with engine Zarr 647804004 | |
652625539 | https://github.com/pydata/xarray/pull/4187#issuecomment-652625539 | https://api.github.com/repos/pydata/xarray/issues/4187 | MDEyOklzc3VlQ29tbWVudDY1MjYyNTUzOQ== | Carreau 335567 | 2020-07-01T20:17:36Z | 2020-07-01T20:17:36Z | CONTRIBUTOR | As a note I'm working on implementing zarr spec v3 in zarr-python, still deciding how we want to handle the new spec/API. If there are any changes that you would like or dislike in an API, feedback is welcome. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray open_mfdataset with engine Zarr 647804004 | |
652104356 | https://github.com/pydata/xarray/pull/4187#issuecomment-652104356 | https://api.github.com/repos/pydata/xarray/issues/4187 | MDEyOklzc3VlQ29tbWVudDY1MjEwNDM1Ng== | weiji14 23487320 | 2020-06-30T23:42:58Z | 2020-07-01T03:04:11Z | CONTRIBUTOR | Four more failures, something to do with dask? Seems related to #3919 and #3921.
Edit: Fixed the
```python-traceback
=================================== FAILURES ===================================
__________________ TestZarrDictStore.test_vectorized_indexing __________________
self = <xarray.tests.test_backends.TestZarrDictStore object at 0x7f5832433940>
@pytest.mark.xfail(
not has_dask,
reason="the code for indexing without dask handles negative steps in slices incorrectly",
)
def test_vectorized_indexing(self):
in_memory = create_test_data()
with self.roundtrip(in_memory) as on_disk:
indexers = {
"dim1": DataArray([0, 2, 0], dims="a"),
"dim2": DataArray([0, 2, 3], dims="a"),
}
expected = in_memory.isel(**indexers)
actual = on_disk.isel(**indexers)
# make sure the array is not yet loaded into memory
assert not actual["var1"].variable._in_memory
assert_identical(expected, actual.load())
# do it twice, to make sure we're switched from
# vectorized -> numpy when we cached the values
actual = on_disk.isel(**indexers)
assert_identical(expected, actual)
def multiple_indexing(indexers):
# make sure a sequence of lazy indexings certainly works.
with self.roundtrip(in_memory) as on_disk:
actual = on_disk["var3"]
expected = in_memory["var3"]
for ind in indexers:
actual = actual.isel(**ind)
expected = expected.isel(**ind)
# make sure the array is not yet loaded into memory
assert not actual.variable._in_memory
assert_identical(expected, actual.load())
# two-staged vectorized-indexing
indexers = [
{
"dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"]),
"dim3": DataArray([[0, 4], [1, 3], [2, 2]], dims=["a", "b"]),
},
{"a": DataArray([0, 1], dims=["c"]), "b": DataArray([0, 1], dims=["c"])},
]
multiple_indexing(indexers)
# vectorized-slice mixed
indexers = [
{
"dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"]),
"dim3": slice(None, 10),
}
]
multiple_indexing(indexers)
# vectorized-integer mixed
indexers = [
{"dim3": 0},
{"dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"])},
{"a": slice(None, None, 2)},
]
multiple_indexing(indexers)
# vectorized-integer mixed
indexers = [
{"dim3": 0},
{"dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"])},
{"a": 1, "b": 0},
]
multiple_indexing(indexers)
# with negative step slice.
indexers = [
{
"dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"]),
"dim3": slice(-1, 1, -1),
}
]
> multiple_indexing(indexers)
xarray/tests/test_backends.py:686:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
xarray/tests/test_backends.py:642: in multiple_indexing
assert_identical(expected, actual.load())
xarray/core/dataarray.py:814: in load
ds = self._to_temp_dataset().load(**kwargs)
xarray/core/dataset.py:666: in load
v.load()
xarray/core/variable.py:381: in load
self._data = np.asarray(self._data)
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/numpy/core/numeric.py:501: in asarray
return array(a, dtype, copy=False, order=order)
xarray/core/indexing.py:677: in __array__
self._ensure_cached()
xarray/core/indexing.py:674: in _ensure_cached
self.array = NumpyIndexingAdapter(np.asarray(self.array))
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/numpy/core/numeric.py:501: in asarray
return array(a, dtype, copy=False, order=order)
xarray/core/indexing.py:653: in __array__
return np.asarray(self.array, dtype=dtype)
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/numpy/core/numeric.py:501: in asarray
return array(a, dtype, copy=False, order=order)
xarray/core/indexing.py:557: in __array__
return np.asarray(array[self.key], dtype=None)
xarray/backends/zarr.py:57: in __getitem__
return array[key.tuple]
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/zarr/core.py:572: in __getitem__
return self.get_basic_selection(selection, fields=fields)
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/zarr/core.py:698: in get_basic_selection
fields=fields)
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/zarr/core.py:738: in _get_basic_selection_nd
indexer = BasicIndexer(selection, self)
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/zarr/indexing.py:279: in __init__
dim_indexer = SliceDimIndexer(dim_sel, dim_len, dim_chunk_len)
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/zarr/indexing.py:107: in __init__
err_negative_step()
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
def err_negative_step():
> raise IndexError('only slices with step >= 1 are supported')
E IndexError: only slices with step >= 1 are supported
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/zarr/errors.py:55: IndexError
_____________________ TestZarrDictStore.test_manual_chunk ______________________
self = <xarray.tests.test_backends.TestZarrDictStore object at 0x7f5832b80cf8>
@requires_dask
@pytest.mark.filterwarnings("ignore:Specified Dask chunks")
def test_manual_chunk(self):
original = create_test_data().chunk({"dim1": 3, "dim2": 4, "dim3": 3})
# All of these should return non-chunked arrays
NO_CHUNKS = (None, 0, {})
for no_chunk in NO_CHUNKS:
open_kwargs = {"chunks": no_chunk}
> with self.roundtrip(original, open_kwargs=open_kwargs) as actual:
xarray/tests/test_backends.py:1594:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/contextlib.py:81: in __enter__
return next(self.gen)
xarray/tests/test_backends.py:1553: in roundtrip
with self.open(store_target, **open_kwargs) as ds:
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/contextlib.py:81: in __enter__
return next(self.gen)
xarray/tests/test_backends.py:1540: in open
with xr.open_dataset(store_target, engine="zarr", **kwargs) as ds:
xarray/backends/api.py:587: in open_dataset
ds = maybe_decode_store(store, chunks)
xarray/backends/api.py:511: in maybe_decode_store
for k, v in ds.variables.items()
xarray/backends/api.py:511: in <dictcomp>
for k, v in ds.variables.items()
xarray/backends/zarr.py:398: in maybe_chunk
var = var.chunk(chunk_spec, name=name2, lock=None)
xarray/core/variable.py:1007: in chunk
data = da.from_array(data, chunks, name=name, lock=lock, **kwargs)
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/dask/array/core.py:2712: in from_array
chunks, x.shape, dtype=x.dtype, previous_chunks=previous_chunks
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/dask/array/core.py:2447: in normalize_chunks
(),
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/dask/array/core.py:2445: in <genexpr>
for s, c in zip(shape, chunks)
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/dask/array/core.py:954: in blockdims_from_blockshape
for d, bd in zip(shape, chunks)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.0 = <zip object at 0x7f58332d9d48>
((bd,) * (d // bd) + ((d % bd,) if d % bd else ()) if d else (0,))
> for d, bd in zip(shape, chunks)
)
E ZeroDivisionError: integer division or modulo by zero
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/dask/array/core.py:954: ZeroDivisionError
_______________ TestZarrDirectoryStore.test_vectorized_indexing ________________
self = <xarray.tests.test_backends.TestZarrDirectoryStore object at 0x7f5832a08a20>
@pytest.mark.xfail(
not has_dask,
reason="the code for indexing without dask handles negative steps in slices incorrectly",
)
def test_vectorized_indexing(self):
in_memory = create_test_data()
with self.roundtrip(in_memory) as on_disk:
indexers = {
"dim1": DataArray([0, 2, 0], dims="a"),
"dim2": DataArray([0, 2, 3], dims="a"),
}
expected = in_memory.isel(**indexers)
actual = on_disk.isel(**indexers)
# make sure the array is not yet loaded into memory
assert not actual["var1"].variable._in_memory
assert_identical(expected, actual.load())
# do it twice, to make sure we're switched from
# vectorized -> numpy when we cached the values
actual = on_disk.isel(**indexers)
assert_identical(expected, actual)
def multiple_indexing(indexers):
# make sure a sequence of lazy indexings certainly works.
with self.roundtrip(in_memory) as on_disk:
actual = on_disk["var3"]
expected = in_memory["var3"]
for ind in indexers:
actual = actual.isel(**ind)
expected = expected.isel(**ind)
# make sure the array is not yet loaded into memory
assert not actual.variable._in_memory
assert_identical(expected, actual.load())
# two-staged vectorized-indexing
indexers = [
{
"dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"]),
"dim3": DataArray([[0, 4], [1, 3], [2, 2]], dims=["a", "b"]),
},
{"a": DataArray([0, 1], dims=["c"]), "b": DataArray([0, 1], dims=["c"])},
]
multiple_indexing(indexers)
# vectorized-slice mixed
indexers = [
{
"dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"]),
"dim3": slice(None, 10),
}
]
multiple_indexing(indexers)
# vectorized-integer mixed
indexers = [
{"dim3": 0},
{"dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"])},
{"a": slice(None, None, 2)},
]
multiple_indexing(indexers)
# vectorized-integer mixed
indexers = [
{"dim3": 0},
{"dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"])},
{"a": 1, "b": 0},
]
multiple_indexing(indexers)
# with negative step slice.
indexers = [
{
"dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"]),
"dim3": slice(-1, 1, -1),
}
]
> multiple_indexing(indexers)
xarray/tests/test_backends.py:686:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
xarray/tests/test_backends.py:642: in multiple_indexing
assert_identical(expected, actual.load())
xarray/core/dataarray.py:814: in load
ds = self._to_temp_dataset().load(**kwargs)
xarray/core/dataset.py:666: in load
v.load()
xarray/core/variable.py:381: in load
self._data = np.asarray(self._data)
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/numpy/core/numeric.py:501: in asarray
return array(a, dtype, copy=False, order=order)
xarray/core/indexing.py:677: in __array__
self._ensure_cached()
xarray/core/indexing.py:674: in _ensure_cached
self.array = NumpyIndexingAdapter(np.asarray(self.array))
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/numpy/core/numeric.py:501: in asarray
return array(a, dtype, copy=False, order=order)
xarray/core/indexing.py:653: in __array__
return np.asarray(self.array, dtype=dtype)
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/numpy/core/numeric.py:501: in asarray
return array(a, dtype, copy=False, order=order)
xarray/core/indexing.py:557: in __array__
return np.asarray(array[self.key], dtype=None)
xarray/backends/zarr.py:57: in __getitem__
return array[key.tuple]
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/zarr/core.py:572: in __getitem__
return self.get_basic_selection(selection, fields=fields)
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/zarr/core.py:698: in get_basic_selection
fields=fields)
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/zarr/core.py:738: in _get_basic_selection_nd
indexer = BasicIndexer(selection, self)
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/zarr/indexing.py:279: in __init__
dim_indexer = SliceDimIndexer(dim_sel, dim_len, dim_chunk_len)
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/zarr/indexing.py:107: in __init__
err_negative_step()
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
def err_negative_step():
> raise IndexError('only slices with step >= 1 are supported')
E IndexError: only slices with step >= 1 are supported
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/zarr/errors.py:55: IndexError
___________________ TestZarrDirectoryStore.test_manual_chunk ___________________
self = <xarray.tests.test_backends.TestZarrDirectoryStore object at 0x7f5831763ef0>
@requires_dask
@pytest.mark.filterwarnings("ignore:Specified Dask chunks")
def test_manual_chunk(self):
original = create_test_data().chunk({"dim1": 3, "dim2": 4, "dim3": 3})
# All of these should return non-chunked arrays
NO_CHUNKS = (None, 0, {})
for no_chunk in NO_CHUNKS:
open_kwargs = {"chunks": no_chunk}
> with self.roundtrip(original, open_kwargs=open_kwargs) as actual:
xarray/tests/test_backends.py:1594:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/contextlib.py:81: in __enter__
return next(self.gen)
xarray/tests/test_backends.py:1553: in roundtrip
with self.open(store_target, **open_kwargs) as ds:
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/contextlib.py:81: in __enter__
return next(self.gen)
xarray/tests/test_backends.py:1540: in open
with xr.open_dataset(store_target, engine="zarr", **kwargs) as ds:
xarray/backends/api.py:587: in open_dataset
ds = maybe_decode_store(store, chunks)
xarray/backends/api.py:511: in maybe_decode_store
for k, v in ds.variables.items()
xarray/backends/api.py:511: in <dictcomp>
for k, v in ds.variables.items()
xarray/backends/zarr.py:398: in maybe_chunk
var = var.chunk(chunk_spec, name=name2, lock=None)
xarray/core/variable.py:1007: in chunk
data = da.from_array(data, chunks, name=name, lock=lock, **kwargs)
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/dask/array/core.py:2712: in from_array
chunks, x.shape, dtype=x.dtype, previous_chunks=previous_chunks
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/dask/array/core.py:2447: in normalize_chunks
(),
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/dask/array/core.py:2445: in <genexpr>
for s, c in zip(shape, chunks)
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/dask/array/core.py:954: in blockdims_from_blockshape
for d, bd in zip(shape, chunks)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.0 = <zip object at 0x7f58324b7f48>
((bd,) * (d // bd) + ((d % bd,) if d % bd else ()) if d else (0,))
> for d, bd in zip(shape, chunks)
)
E ZeroDivisionError: integer division or modulo by zero
/usr/share/miniconda/envs/xarray-tests/lib/python3.6/site-packages/dask/array/core.py:954: ZeroDivisionError
```
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray open_mfdataset with engine Zarr 647804004 | |
651772649 | https://github.com/pydata/xarray/pull/4187#issuecomment-651772649 | https://api.github.com/repos/pydata/xarray/issues/4187 | MDEyOklzc3VlQ29tbWVudDY1MTc3MjY0OQ== | weiji14 23487320 | 2020-06-30T12:56:00Z | 2020-06-30T12:56:00Z | CONTRIBUTOR | Is it ok to drop the deprecated |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray open_mfdataset with engine Zarr 647804004 | |
651662701 | https://github.com/pydata/xarray/pull/4187#issuecomment-651662701 | https://api.github.com/repos/pydata/xarray/issues/4187 | MDEyOklzc3VlQ29tbWVudDY1MTY2MjcwMQ== | weiji14 23487320 | 2020-06-30T09:03:53Z | 2020-06-30T09:24:12Z | CONTRIBUTOR | Nevermind, I found it. There was an
```python-traceback
=================================== FAILURES ===================================
__________________________ TestDataset.test_lazy_load __________________________
self = <xarray.tests.test_dataset.TestDataset object at 0x7f4aed5df940>
def test_lazy_load(self):
store = InaccessibleVariableDataStore()
create_test_data().dump_to_store(store)
for decode_cf in [True, False]:
> ds = open_dataset(store, decode_cf=decode_cf)
xarray/tests/test_dataset.py:4188:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
xarray/backends/api.py:587: in open_dataset
ds = maybe_decode_store(store)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
store = <xarray.tests.test_dataset.InaccessibleVariableDataStore object at 0x7f4aed5dfb38>
lock = False
def maybe_decode_store(store, lock=False):
ds = conventions.decode_cf(
store,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
drop_variables=drop_variables,
use_cftime=use_cftime,
decode_timedelta=decode_timedelta,
)
_protect_dataset_variables_inplace(ds, cache)
> if chunks is not None:
E UnboundLocalError: local variable 'chunks' referenced before assignment
xarray/backends/api.py:466: UnboundLocalError
```
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray open_mfdataset with engine Zarr 647804004 | |
651624166 | https://github.com/pydata/xarray/pull/4187#issuecomment-651624166 | https://api.github.com/repos/pydata/xarray/issues/4187 | MDEyOklzc3VlQ29tbWVudDY1MTYyNDE2Ng== | weiji14 23487320 | 2020-06-30T08:02:03Z | 2020-06-30T09:23:32Z | CONTRIBUTOR | This is the one test failure (AttributeError) on Linux py36-bare-minimum:
```python-traceback
=================================== FAILURES ===================================
__________________________ TestDataset.test_lazy_load __________________________
self = <xarray.tests.test_dataset.TestDataset object at 0x7fa80b2b7be0>
def test_lazy_load(self):
store = InaccessibleVariableDataStore()
create_test_data().dump_to_store(store)
for decode_cf in [True, False]:
> ds = open_dataset(store, decode_cf=decode_cf)
xarray/tests/test_dataset.py:4188:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
xarray/backends/api.py:578: in open_dataset
engine = _get_engine_from_magic_number(filename_or_obj)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
filename_or_obj = <xarray.tests.test_dataset.InaccessibleVariableDataStore object at 0x7fa80b2b7d30>
def _get_engine_from_magic_number(filename_or_obj):
# check byte header to determine file type
if isinstance(filename_or_obj, bytes):
magic_number = filename_or_obj[:8]
else:
> if filename_or_obj.tell() != 0:
E AttributeError: 'InaccessibleVariableDataStore' object has no attribute 'tell'
xarray/backends/api.py:116: AttributeError
```
Been scratching my head debugging this one. There doesn't seem to be an obvious reason why this test is failing, since 1) this test isn't for Zarr and 2) this test shouldn't be affected by the new |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray open_mfdataset with engine Zarr 647804004 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 3