issue_comments
1 row where author_association = "CONTRIBUTOR" and issue = 60303760 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- pd.Grouper support? · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 341598412 | https://github.com/pydata/xarray/issues/364#issuecomment-341598412 | https://api.github.com/repos/pydata/xarray/issues/364 | MDEyOklzc3VlQ29tbWVudDM0MTU5ODQxMg== | hazbottles 14136435 | 2017-11-03T00:40:14Z | 2017-11-03T00:40:39Z | CONTRIBUTOR | Hi, being able to pass a ```python import pandas as pd import xarray as xr dates = pd.DatetimeIndex(['2017-01-01 15:00', '2017-01-02 14:00', '2017-01-02 23:00']) da = xr.DataArray([1, 2, 3], dims=['time'], coords={'time': dates}) time_grouper = pd.TimeGrouper(freq='24h', base=15) digging around the source code for xr.DataArray.resample i found thisgrouped = xr.core.groupby.DataArrayGroupBy(da, 'time', grouper=time_grouper) for _, sub_da in grouped: print(sub_da) ``` which prints:
Would it be possible to add a |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
pd.Grouper support? 60303760 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1