issue_comments
1 row where author_association = "CONTRIBUTOR" and issue = 60303760 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- pd.Grouper support? · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
341598412 | https://github.com/pydata/xarray/issues/364#issuecomment-341598412 | https://api.github.com/repos/pydata/xarray/issues/364 | MDEyOklzc3VlQ29tbWVudDM0MTU5ODQxMg== | hazbottles 14136435 | 2017-11-03T00:40:14Z | 2017-11-03T00:40:39Z | CONTRIBUTOR | Hi, being able to pass a ```python import pandas as pd import xarray as xr dates = pd.DatetimeIndex(['2017-01-01 15:00', '2017-01-02 14:00', '2017-01-02 23:00']) da = xr.DataArray([1, 2, 3], dims=['time'], coords={'time': dates}) time_grouper = pd.TimeGrouper(freq='24h', base=15) digging around the source code for xr.DataArray.resample i found thisgrouped = xr.core.groupby.DataArrayGroupBy(da, 'time', grouper=time_grouper) for _, sub_da in grouped: print(sub_da) ``` which prints:
Would it be possible to add a |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
pd.Grouper support? 60303760 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1