issue_comments
4 rows where author_association = "CONTRIBUTOR" and issue = 383945783 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: reactions, created_at (date), updated_at (date)
issue 1
- Xarray equivalent of np.place or df.map(mapping)? · 4 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
671101989 | https://github.com/pydata/xarray/issues/2568#issuecomment-671101989 | https://api.github.com/repos/pydata/xarray/issues/2568 | MDEyOklzc3VlQ29tbWVudDY3MTEwMTk4OQ== | ahuang11 15331990 | 2020-08-09T21:15:41Z | 2020-08-09T21:15:41Z | CONTRIBUTOR | If I were to make a PR, where would this method reside? Would it be under dataset.py and dataarray.py? Also, would I simply call np.select inside the method, and if so, how would I add support for dask? My minimal example atm: ``` import xarray as xr import numpy as np import hvplot.xarray ds = xr.tutorial.open_dataset('air_temperature').isel(time=0) ds['air_cats'] = (
('lat', 'lon'),
np.select([ds['air'].values >= 273.15, ds['air'].values < 273.15], ['above freezing', 'below freezing'])
)
ds.hvplot('lon', 'lat', hover_cols=['air_cats'])
```
|
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray equivalent of np.place or df.map(mapping)? 383945783 | |
599133152 | https://github.com/pydata/xarray/issues/2568#issuecomment-599133152 | https://api.github.com/repos/pydata/xarray/issues/2568 | MDEyOklzc3VlQ29tbWVudDU5OTEzMzE1Mg== | ahuang11 15331990 | 2020-03-14T20:48:52Z | 2020-03-14T20:48:52Z | CONTRIBUTOR | No, not from me at least. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray equivalent of np.place or df.map(mapping)? 383945783 | |
441344567 | https://github.com/pydata/xarray/issues/2568#issuecomment-441344567 | https://api.github.com/repos/pydata/xarray/issues/2568 | MDEyOklzc3VlQ29tbWVudDQ0MTM0NDU2Nw== | ahuang11 15331990 | 2018-11-24T05:17:09Z | 2018-11-24T05:25:45Z | CONTRIBUTOR | Thanks for the quick replies! Is there interest in making this a built-in function? If so, I can help contribute a PR. Also wondering about a way to wrap logic to that mapping. Like below 0, replace with -1, between 0 and 10, replace with 5, and above 10, replace with 15 which is possible with three np.place statements I think, but have to think in backwards logic with ds.where(). |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray equivalent of np.place or df.map(mapping)? 383945783 | |
441342986 | https://github.com/pydata/xarray/issues/2568#issuecomment-441342986 | https://api.github.com/repos/pydata/xarray/issues/2568 | MDEyOklzc3VlQ29tbWVudDQ0MTM0Mjk4Ng== | ahuang11 15331990 | 2018-11-24T04:34:17Z | 2018-11-24T04:34:17Z | CONTRIBUTOR | I guess I'm thinking about more complex cases such as changing 0 -> 50, 1 -> 29, 2 -> 10
Thoughts on simplifying this? |
{ "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray equivalent of np.place or df.map(mapping)? 383945783 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1