issue_comments
3 rows where author_association = "CONTRIBUTOR" and issue = 307783090 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- rolling: allow control over padding · 3 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
880141480 | https://github.com/pydata/xarray/issues/2007#issuecomment-880141480 | https://api.github.com/repos/pydata/xarray/issues/2007 | MDEyOklzc3VlQ29tbWVudDg4MDE0MTQ4MA== | kmsquire 223250 | 2021-07-14T19:10:46Z | 2021-07-14T19:10:46Z | CONTRIBUTOR | I added support for That fixes, e.g., #4743, but I don't think it's a complete fix for this issue. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
rolling: allow control over padding 307783090 | |
876103462 | https://github.com/pydata/xarray/issues/2007#issuecomment-876103462 | https://api.github.com/repos/pydata/xarray/issues/2007 | MDEyOklzc3VlQ29tbWVudDg3NjEwMzQ2Mg== | kmsquire 223250 | 2021-07-08T03:55:33Z | 2021-07-08T03:55:33Z | CONTRIBUTOR |
For this API, it seems that the only thing that would need to be implemented would be adding a |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
rolling: allow control over padding 307783090 | |
392070454 | https://github.com/pydata/xarray/issues/2007#issuecomment-392070454 | https://api.github.com/repos/pydata/xarray/issues/2007 | MDEyOklzc3VlQ29tbWVudDM5MjA3MDQ1NA== | raybellwaves 17162724 | 2018-05-25T14:11:20Z | 2018-05-25T14:11:20Z | CONTRIBUTOR | I was going to suggest this feature so glad others are interested. In my use case I would like to smooth a daily climatology. My colleague uses matlab and uses https://www.mathworks.com/matlabcentral/fileexchange/52688-nan-tolerant-fast-smooth Using the ``` import numpy as np import pandas as pd import xarray as xr times = pd.date_range('2000-01-01', '2010-12-31', name='time') annual_cycle = np.sin(2 * np.pi * (times.dayofyear.values / 366 - 0.28)) noise = 15 * np.random.rand(annual_cycle.size) data = 10 + (15 * annual_cycle) + noise da = xr.DataArray(data, coords=[times], dims='time') da.plot()Check variability at one dayda.groupby('time.dayofyear').std('time')[0]da_clim = da.groupby('time.dayofyear').mean('time') _da_clim = xr.concat([da_clim[-15:], da_clim, da_clim[:15]], 'dayofyear') da_clim_smooth = _da_clim.rolling(dayofyear=31, center=True).mean().dropna('dayofyear') da_clim_smooth.plot()``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
rolling: allow control over padding 307783090 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 2