issue_comments
1 row where author_association = "CONTRIBUTOR", issue = 221858543 and user = 630936 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Sparse arrays · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 326803603 | https://github.com/pydata/xarray/issues/1375#issuecomment-326803603 | https://api.github.com/repos/pydata/xarray/issues/1375 | MDEyOklzc3VlQ29tbWVudDMyNjgwMzYwMw== | rth 630936 | 2017-09-03T13:01:44Z | 2017-09-03T13:01:44Z | CONTRIBUTOR |
Other examples where labeled sparse arrays would be useful are, * one-hot encoding that are widely used in machine learning. * tokenizing textual data produces large sparse matrices where the column labels correspond to the vocabulary, while row labels correspond to document ids. Here is a minimal example using scikit-learn, ```py import os.path from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import CountVectorizer |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Sparse arrays 221858543 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1