issue_comments
2 rows where author_association = "CONTRIBUTOR" and issue = 117039129 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- groupby very slow compared to pandas · 2 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
156925589 | https://github.com/pydata/xarray/issues/659#issuecomment-156925589 | https://api.github.com/repos/pydata/xarray/issues/659 | MDEyOklzc3VlQ29tbWVudDE1NjkyNTU4OQ== | anntzer 1322974 | 2015-11-16T06:10:25Z | 2015-11-16T06:10:25Z | CONTRIBUTOR | Perhaps worth mentioning in the docs? The difference turned out to be a major bottleneck in my code. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
groupby very slow compared to pandas 117039129 | |
156917053 | https://github.com/pydata/xarray/issues/659#issuecomment-156917053 | https://api.github.com/repos/pydata/xarray/issues/659 | MDEyOklzc3VlQ29tbWVudDE1NjkxNzA1Mw== | anntzer 1322974 | 2015-11-16T05:14:50Z | 2015-11-16T05:14:50Z | CONTRIBUTOR | In my case I could just switch to pandas, so I'll leave it as it is for now. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
groupby very slow compared to pandas 117039129 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1