issue_comments
4 rows where issue = 304021813 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Efficient rolling 'trick' · 4 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
371990150 | https://github.com/pydata/xarray/issues/1978#issuecomment-371990150 | https://api.github.com/repos/pydata/xarray/issues/1978 | MDEyOklzc3VlQ29tbWVudDM3MTk5MDE1MA== | max-sixty 5635139 | 2018-03-10T01:23:06Z | 2018-03-10T01:23:06Z | MEMBER |
🤦♂️ I think my memory is getting worse every day! I glanced at this myself back in Jan. Closing! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Efficient rolling 'trick' 304021813 | |
371989690 | https://github.com/pydata/xarray/issues/1978#issuecomment-371989690 | https://api.github.com/repos/pydata/xarray/issues/1978 | MDEyOklzc3VlQ29tbWVudDM3MTk4OTY5MA== | fujiisoup 6815844 | 2018-03-10T01:18:11Z | 2018-03-10T01:18:11Z | MEMBER | Yes. ```python In [7]: da.rolling(date=3).construct('rolling_date') Out[7]: <xarray.DataArray (item: 2, date: 6, rolling_date: 3)> array([[[nan, nan, 0.], [nan, 0., 1.], [ 0., 1., 2.], [ 1., 2., 3.], [ 2., 3., 4.], [ 3., 4., 5.]],
Dimensions without coordinates: item, date, rolling_date
FYI, using |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Efficient rolling 'trick' 304021813 | |
371986534 | https://github.com/pydata/xarray/issues/1978#issuecomment-371986534 | https://api.github.com/repos/pydata/xarray/issues/1978 | MDEyOklzc3VlQ29tbWVudDM3MTk4NjUzNA== | shoyer 1217238 | 2018-03-10T00:51:42Z | 2018-03-10T00:51:42Z | MEMBER | This is exactly what @fujiisoup just implemented in #1837. It's a nice trick. If the window is large, it's not quite as fast using a clever algorithm for rolling sums like bottleneck, but it still gives something like a 100x performance boost over the naive loop we used to use. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Efficient rolling 'trick' 304021813 | |
371985627 | https://github.com/pydata/xarray/issues/1978#issuecomment-371985627 | https://api.github.com/repos/pydata/xarray/issues/1978 | MDEyOklzc3VlQ29tbWVudDM3MTk4NTYyNw== | jhamman 2443309 | 2018-03-10T00:45:03Z | 2018-03-10T00:45:03Z | MEMBER | I'll let @fujiisoup / @shoyer confirm but this looks eerily similar to #1837. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Efficient rolling 'trick' 304021813 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 4