issue_comments
5 rows where issue = 279595497 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- ENH: Add dt.date accessor. · 5 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
349819742 | https://github.com/pydata/xarray/pull/1762#issuecomment-349819742 | https://api.github.com/repos/pydata/xarray/issues/1762 | MDEyOklzc3VlQ29tbWVudDM0OTgxOTc0Mg== | shoyer 1217238 | 2017-12-07T00:23:27Z | 2017-12-07T00:23:27Z | MEMBER |
Sure. You could write, e.g.,
I would be inclined to stick to the datetime methods/properties from pandas: https://pandas.pydata.org/pandas-docs/stable/api.html#datetimelike-properties |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
ENH: Add dt.date accessor. 279595497 | |
349559801 | https://github.com/pydata/xarray/pull/1762#issuecomment-349559801 | https://api.github.com/repos/pydata/xarray/issues/1762 | MDEyOklzc3VlQ29tbWVudDM0OTU1OTgwMQ== | dcherian 2448579 | 2017-12-06T07:39:53Z | 2017-12-06T07:39:53Z | MEMBER | Oh, I see your point. Once implemented, would the round/ceil/floor methods work as arguments to groupby too? That's really what I wanted to do. Are you in favor of renaming the current functionality to |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
ENH: Add dt.date accessor. 279595497 | |
349548370 | https://github.com/pydata/xarray/pull/1762#issuecomment-349548370 | https://api.github.com/repos/pydata/xarray/issues/1762 | MDEyOklzc3VlQ29tbWVudDM0OTU0ODM3MA== | shoyer 1217238 | 2017-12-06T06:30:54Z | 2017-12-06T06:30:54Z | MEMBER | @dcherian I think I was unclear in my earlier comment. I don't like the current API, because it is inconsistent with |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
ENH: Add dt.date accessor. 279595497 | |
349509477 | https://github.com/pydata/xarray/pull/1762#issuecomment-349509477 | https://api.github.com/repos/pydata/xarray/issues/1762 | MDEyOklzc3VlQ29tbWVudDM0OTUwOTQ3Nw== | dcherian 2448579 | 2017-12-06T02:21:46Z | 2017-12-06T02:21:46Z | MEMBER | @shoyer Didn't know |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
ENH: Add dt.date accessor. 279595497 | |
349508097 | https://github.com/pydata/xarray/pull/1762#issuecomment-349508097 | https://api.github.com/repos/pydata/xarray/issues/1762 | MDEyOklzc3VlQ29tbWVudDM0OTUwODA5Nw== | shoyer 1217238 | 2017-12-06T02:14:18Z | 2017-12-06T02:14:18Z | MEMBER | My main concern here is that pandas returns an array of In [2]: t = pd.date_range('2010-01-01', periods=12, freq='3H') In [3]: t Out[3]: DatetimeIndex(['2010-01-01 00:00:00', '2010-01-01 03:00:00', '2010-01-01 06:00:00', '2010-01-01 09:00:00', '2010-01-01 12:00:00', '2010-01-01 15:00:00', '2010-01-01 18:00:00', '2010-01-01 21:00:00', '2010-01-02 00:00:00', '2010-01-02 03:00:00', '2010-01-02 06:00:00', '2010-01-02 09:00:00'], dtype='datetime64[ns]', freq='3H') In [4]: t.date Out[4]: array([datetime.date(2010, 1, 1), datetime.date(2010, 1, 1), datetime.date(2010, 1, 1), datetime.date(2010, 1, 1), datetime.date(2010, 1, 1), datetime.date(2010, 1, 1), datetime.date(2010, 1, 1), datetime.date(2010, 1, 1), datetime.date(2010, 1, 2), datetime.date(2010, 1, 2), datetime.date(2010, 1, 2), datetime.date(2010, 1, 2)], dtype=object) ``` Possibly implementing |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
ENH: Add dt.date accessor. 279595497 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 2