issue_comments: 948691519
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/issues/5877#issuecomment-948691519 | https://api.github.com/repos/pydata/xarray/issues/5877 | 948691519 | IC_kwDOAMm_X844i-I_ | 10194086 | 2021-10-21T14:45:47Z | 2021-10-21T14:45:47Z | MEMBER | AFAIK bottleneck uses a less precise algorithm for sums than numpy (pydata/bottleneck#379). However, I don't know why this yields 0 at the beginning but not at the end. A slightly more minimal example: ```python import bottleneck as bn import numpy as np import pandas as pd data = np.array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.31, 0.91999996, 8.3, 1.42, 0.03, 1.22, 0.09999999, 0.14, 0.13, 0.0, 0.12, 0.03, 2.53, 0.0, 0.19999999, 0.19999999, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ], dtype="float32", ) bn.move_sum(data, window=3) pd.Series(data).rolling(3).mean() np.convolve(data, np.ones(3), 'valid') / 3 ``` |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
1030768250 |