pull_requests
7 rows where user = 8809578
This data as json, CSV (advanced)
Suggested facets: base, created_at (date), updated_at (date), closed_at (date), merged_at (date)
| id ▼ | node_id | number | state | locked | title | user | body | created_at | updated_at | closed_at | merged_at | merge_commit_sha | assignee | milestone | draft | head | base | author_association | auto_merge | repo | url | merged_by |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 761583682 | PR_kwDOAMm_X84tZNhC | 5876 | closed | 0 | _season_from_months can now handle np.nan | pierreloicq 8809578 | _season_from_months can now handle np.nan and values outside of [1,12] I passed these tests: ``` def test_season(): months = np.array([ 1, 2, 3, 4, 5, np.nan]) assert ( _season_from_months(months) == np.array(['DJF', 'DJF', 'MAM', 'MAM', 'MAM', 'na']) ).all() months = np.array([ 1, 100, 3, 13, 0, -5]) assert ( _season_from_months(months) == np.array(['DJF', 'na', 'MAM', 'na', 'na', 'na']) ).all() months = np.array(range(1, 13)) assert ( _season_from_months(months) == np.array(['DJF', 'DJF', 'MAM', 'MAM', 'MAM', 'JJA', 'JJA', 'JJA', 'SON', 'SON', 'SON', 'DJF']) ).all() test_season() ``` | 2021-10-19T16:04:41Z | 2023-01-06T16:59:18Z | 2022-01-11T16:06:18Z | 2022-01-11T16:06:18Z | aeb00f9da90e4485d2e94f6796c7dd96a2cb1278 | 0 | 11d2f131fe2b830ec5d9a9620a6b701724d51c62 | 5b322c9ea18f560e35857edcb78efe4e4f323551 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/5876 | ||||
| 1100336216 | PR_kwDOAMm_X85BlcxY | 7226 | closed | 0 | make clearer that sortby() do not run inplace | pierreloicq 8809578 | ...as python List sort() is in-place | 2022-10-26T14:06:23Z | 2022-10-26T15:56:02Z | 2022-10-26T15:56:02Z | 2022-10-26T15:56:02Z | 97c70cfe7d1942a0350bb01fd6b2a076306440aa | 0 | fa24fc64c3af09dee01e326c3d638094d7f18a2b | ca57e5cd984e626487636628b1d34dca85cc2e7c | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/7226 | ||||
| 1101923043 | PR_kwDOAMm_X85BrgLj | 7230 | closed | 0 | set_coords docs: see also Dataset.assign_coords | pierreloicq 8809578 | 2022-10-27T16:06:08Z | 2022-10-28T07:14:42Z | 2022-10-27T17:08:30Z | 2022-10-27T17:08:30Z | b9aedd0155548ed0f34506ecc255b1688f07ffaa | 0 | 6cab940441a6a4f6a5c593f5b272fec065f800fb | c000690c7aa6dd134b45e580f377681a0de1996c | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/7230 | |||||
| 1101923241 | PR_kwDOAMm_X85BrgOp | 7231 | closed | 0 | assign_coords docs: see also Dataset.set_coords | pierreloicq 8809578 | 2022-10-27T16:06:19Z | 2022-10-28T07:15:03Z | 2022-10-27T17:07:28Z | 2022-10-27T17:07:28Z | 30cb42da9456971a5b21d950639d5a72c8f5fe1d | 0 | 145fa68905cbf02abda53ebd31c212d4b0fb203d | c000690c7aa6dd134b45e580f377681a0de1996c | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/7231 | |||||
| 1188414916 | PR_kwDOAMm_X85G1cXE | 7425 | closed | 0 | groupby in resample doc and vice-versa | pierreloicq 8809578 | Since groupby is a bit like resample on non contiguous data | 2023-01-06T16:54:32Z | 2023-01-09T09:43:41Z | 2023-01-06T18:25:02Z | 2023-01-06T18:25:02Z | 2ef82c535e2212a6c3dc21d0ac07e2e4236d68dc | 0 | 8fb459b91103642849a97b77827ec40ece359705 | d6d24507793af9bcaed79d7f8d3ac910e176f1ce | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/7425 | ||||
| 1219446335 | PR_kwDOAMm_X85Ir0Y_ | 7481 | closed | 0 | clarification for thresh arg of dataset.dropna() | pierreloicq 8809578 | 2023-01-27T15:00:34Z | 2023-02-14T13:57:38Z | 2023-02-14T13:57:37Z | 2023-02-14T13:57:37Z | cd901842144ce7f52b08b5b271310f31f6b04c26 | 0 | fb7fab71b34d1b198b750cd3b517e5e1f11b3616 | 50912e26f156cb3a6b9d9f347999bf7c7d432eb6 | CONTRIBUTOR | {
"enabled_by": {
"login": "mathause",
"id": 10194086,
"node_id": "MDQ6VXNlcjEwMTk0MDg2",
"avatar_url": "https://avatars.githubusercontent.com/u/10194086?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mathause",
"html_url": "https://github.com/mathause",
"followers_url": "https://api.github.com/users/mathause/followers",
"following_url": "https://api.github.com/users/mathause/following{/other_user}",
"gists_url": "https://api.github.com/users/mathause/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mathause/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mathause/subscriptions",
"organizations_url": "https://api.github.com/users/mathause/orgs",
"repos_url": "https://api.github.com/users/mathause/repos",
"events_url": "https://api.github.com/users/mathause/events{/privacy}",
"received_events_url": "https://api.github.com/users/mathause/received_events",
"type": "User",
"site_admin": false
},
"merge_method": "squash",
"commit_title": "clarification for thresh arg of dataset.dropna() (#7481)",
"commit_message": "* clarification for thresh arg of dataset.dropna()\r\n\r\n* Update xarray/core/dataset.py\r\n\r\n---------\r\n\r\nCo-authored-by: Mathias Hauser <mathause@users.noreply.github.com>"
} |
xarray 13221727 | https://github.com/pydata/xarray/pull/7481 | ||||
| 1303348638 | PR_kwDOAMm_X85Nr4We | 7725 | closed | 0 | [DOC] resample and then apply func on time+other variables | pierreloicq 8809578 | It cannot be run with python since previous dataset is unidimensionnal. Feel free to make it more rigorous if you want. | 2023-04-05T14:54:45Z | 2023-04-06T07:13:58Z | 2023-04-06T02:15:01Z | 2023-04-06T02:15:01Z | 86266902d65df36482629aa8cf7b5719bd461970 | 0 | 0dea34378b191b126ac437af2e453603119ef549 | d4db16699f30ad1dc3e6861601247abf4ac96567 | CONTRIBUTOR | {
"enabled_by": {
"login": "dcherian",
"id": 2448579,
"node_id": "MDQ6VXNlcjI0NDg1Nzk=",
"avatar_url": "https://avatars.githubusercontent.com/u/2448579?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/dcherian",
"html_url": "https://github.com/dcherian",
"followers_url": "https://api.github.com/users/dcherian/followers",
"following_url": "https://api.github.com/users/dcherian/following{/other_user}",
"gists_url": "https://api.github.com/users/dcherian/gists{/gist_id}",
"starred_url": "https://api.github.com/users/dcherian/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/dcherian/subscriptions",
"organizations_url": "https://api.github.com/users/dcherian/orgs",
"repos_url": "https://api.github.com/users/dcherian/repos",
"events_url": "https://api.github.com/users/dcherian/events{/privacy}",
"received_events_url": "https://api.github.com/users/dcherian/received_events",
"type": "User",
"site_admin": false
},
"merge_method": "squash",
"commit_title": "[DOC] resample and then apply func on time+other variables (#7725)",
"commit_message": "* [DOC] resample and then apply func on time+other variables:\r\n\r\n* [pre-commit.ci] auto fixes from pre-commit.com hooks\r\n\r\nfor more information, see https://pre-commit.ci\r\n\r\n* Update doc/user-guide/time-series.rst\r\n\r\n---------\r\n\r\nCo-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>\r\nCo-authored-by: Deepak Cherian <dcherian@users.noreply.github.com>"
} |
xarray 13221727 | https://github.com/pydata/xarray/pull/7725 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [pull_requests] (
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[number] INTEGER,
[state] TEXT,
[locked] INTEGER,
[title] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[body] TEXT,
[created_at] TEXT,
[updated_at] TEXT,
[closed_at] TEXT,
[merged_at] TEXT,
[merge_commit_sha] TEXT,
[assignee] INTEGER REFERENCES [users]([id]),
[milestone] INTEGER REFERENCES [milestones]([id]),
[draft] INTEGER,
[head] TEXT,
[base] TEXT,
[author_association] TEXT,
[auto_merge] TEXT,
[repo] INTEGER REFERENCES [repos]([id]),
[url] TEXT,
[merged_by] INTEGER REFERENCES [users]([id])
);
CREATE INDEX [idx_pull_requests_merged_by]
ON [pull_requests] ([merged_by]);
CREATE INDEX [idx_pull_requests_repo]
ON [pull_requests] ([repo]);
CREATE INDEX [idx_pull_requests_milestone]
ON [pull_requests] ([milestone]);
CREATE INDEX [idx_pull_requests_assignee]
ON [pull_requests] ([assignee]);
CREATE INDEX [idx_pull_requests_user]
ON [pull_requests] ([user]);