home / github

Menu
  • GraphQL API
  • Search all tables

pull_requests

Table actions
  • GraphQL API for pull_requests

2 rows where user = 703554

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date), closed_at (date), merged_at (date)

id ▼ node_id number state locked title user body created_at updated_at closed_at merged_at merge_commit_sha assignee milestone draft head base author_association auto_merge repo url merged_by
15820652 MDExOlB1bGxSZXF1ZXN0MTU4MjA2NTI= 127 closed 0 initial implementation of support for NetCDF groups alimanfoo 703554 Just to start getting familiar with xray, I've had a go at implementing support for opening a dataset from a specific group within a NetCDF file. I haven't tested on real data but there are a couple of unit tests covering simple cases. Let me know if you'd like to take this forward, happy to work on it further. 2014-05-13T13:12:53Z 2014-06-27T17:23:33Z 2014-05-16T01:46:09Z 2014-05-16T01:46:09Z efece21b5fce99465a52c866b890e34f19d5bd37   0.1.1 664063 0 28b0ba59b33f63dcd6f6cb05666b3cd98211f4b4 ed3143e3082ba339d35dc4678ddabc7e175dd6b8 CONTRIBUTOR   xarray 13221727 https://github.com/pydata/xarray/pull/127  
582942232 MDExOlB1bGxSZXF1ZXN0NTgyOTQyMjMy 4984 closed 0 Adds Dataset.query() method, analogous to pandas DataFrame.query() alimanfoo 703554 This PR adds a `Dataset.query()` method which enables making a selection from a dataset based on values in one or more data variables, where the selection is given as a query expression to be evaluated against the data variables in the dataset. See also [discussion](https://github.com/pydata/xarray/discussions/4969). - [x] Tests added - [x] Passes `pre-commit run --all-files` - [x] User visible changes (including notable bug fixes) are documented in `whats-new.rst` - [x] New functions/methods are listed in `api.rst` 2021-03-02T11:08:42Z 2021-03-16T18:28:09Z 2021-03-16T17:28:15Z 2021-03-16T17:28:15Z 37fe5441c8a2fb981f2c50b8379d7d4f8492ae19     0 8fcb02e6663ba24392a2ef7540a76a05fd382cc2 daea5df23209e8b7148067fd6272e2eed9f40bf1 CONTRIBUTOR   xarray 13221727 https://github.com/pydata/xarray/pull/4984  

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [pull_requests] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [state] TEXT,
   [locked] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [body] TEXT,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [merged_at] TEXT,
   [merge_commit_sha] TEXT,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [draft] INTEGER,
   [head] TEXT,
   [base] TEXT,
   [author_association] TEXT,
   [auto_merge] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [url] TEXT,
   [merged_by] INTEGER REFERENCES [users]([id])
);
CREATE INDEX [idx_pull_requests_merged_by]
    ON [pull_requests] ([merged_by]);
CREATE INDEX [idx_pull_requests_repo]
    ON [pull_requests] ([repo]);
CREATE INDEX [idx_pull_requests_milestone]
    ON [pull_requests] ([milestone]);
CREATE INDEX [idx_pull_requests_assignee]
    ON [pull_requests] ([assignee]);
CREATE INDEX [idx_pull_requests_user]
    ON [pull_requests] ([user]);
Powered by Datasette · Queries took 19.201ms · About: xarray-datasette