pull_requests
18 rows where user = 514053
This data as json, CSV (advanced)
Suggested facets: milestone, base, created_at (date), updated_at (date), closed_at (date), merged_at (date)
id ▼ | node_id | number | state | locked | title | user | body | created_at | updated_at | closed_at | merged_at | merge_commit_sha | assignee | milestone | draft | head | base | author_association | auto_merge | repo | url | merged_by |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10275318 | MDExOlB1bGxSZXF1ZXN0MTAyNzUzMTg= | 2 | closed | 0 | Data objects now have a swappable backend store. | akleeman 514053 | - Allows conversion to and from: NetCDF4, scipy.io.netcdf and in memory storage. - Added general test cases, and cases for specific backend stores. | 2013-11-25T20:48:40Z | 2016-12-29T02:39:48Z | 2014-01-29T19:20:58Z | 5d8e6998d42efa29b62346b0b41b8a6eac27fb47 | 0 | 073f52281d55e4ed8c1999fcdcff7d4dba54cd76 | eb971ee40161350e79e034cad5d1d9933b78f78d | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/2 | |||||
12005789 | MDExOlB1bGxSZXF1ZXN0MTIwMDU3ODk= | 8 | closed | 0 | Datasets now use data stores to allow swap-able backends | akleeman 514053 | ``` Data objects now have a swap-able backend store. - Allows conversion to and from: NetCDF4, scipy.io.netcdf and in memory storage. - Added general test cases, and cases for specific backend stores. - Dataset.translate() can now optionally copy the object. - Fixed most unit tests, test_translate_consistency still fails. ``` | 2014-01-29T19:25:42Z | 2014-06-17T00:35:01Z | 2014-01-29T19:30:09Z | 2014-01-29T19:30:09Z | 1f7bf07ce664cd4d1915956a459312bce9ef8505 | 0 | 58551773afcefb0cb32d24ced95602e6fc35b360 | 6b77d820851d9d9f6d4196c222d8ea75cdf26193 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/8 | ||||
12941602 | MDExOlB1bGxSZXF1ZXN0MTI5NDE2MDI= | 21 | closed | 0 | Cf time units persist | akleeman 514053 | Internally Datasets convert time coordinates to pandas.DatetimeIndex. The backend function convert_to_cf_variable will convert these datetimes back to CF style times, but the original units were not being preserved. | 2014-02-26T08:05:41Z | 2014-06-12T17:29:24Z | 2014-02-28T01:45:21Z | 9b89321f4c39477abb64d09f7c3b238c6ff1c1ee | 0 | 9b403acf84e38418d820b4dd658c865503e3076f | 6167e0f3f8617534be0fcf43b9618bd82d431ef4 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/21 | |||||
13103084 | MDExOlB1bGxSZXF1ZXN0MTMxMDMwODQ= | 40 | closed | 0 | Encodings for object data types are not saved. | akleeman 514053 | decode_cf_variable will not save encoding for any 'object' dtypes. When encoding cf variables check if dtype is np.datetime64 as well as DatetimeIndex. fixes akleeman/xray/issues/39 | 2014-03-03T07:22:37Z | 2014-04-09T04:10:56Z | 2014-03-07T02:21:16Z | 7daf9d244f727247dd49a11171d3902ebbd5ef43 | 0 | 34b65e1af60b1740dd825b47ff80a0e50d0ade64 | 08a03b3c3a864ae0743623c67c66f72da8422d79 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/40 | |||||
13175676 | MDExOlB1bGxSZXF1ZXN0MTMxNzU2NzY= | 46 | closed | 0 | Test lazy loading from stores using mock XArray classes. | akleeman 514053 | 2014-03-04T18:50:40Z | 2014-03-04T23:24:52Z | 2014-03-04T23:10:28Z | 2014-03-04T23:10:28Z | 744cc1dfd2eb641e1677b93991de2fa15fa12b87 | 0 | c002324efb2d1966ad33c21d960f3bfd6dabff90 | 63ea8c5f7a1792a086e85604b4f267684f299dd4 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/46 | |||||
14074398 | MDExOlB1bGxSZXF1ZXN0MTQwNzQzOTg= | 84 | closed | 0 | Fix: dataset_repr was failing on empty datasets. | akleeman 514053 | BUG: dataset_repr was failing on empty datasets. | 2014-03-27T18:29:18Z | 2014-03-27T20:09:45Z | 2014-03-27T20:05:49Z | 2014-03-27T20:05:49Z | 93e318a319e9ab6f5e1a8fa1e118131647709df6 | 0 | 68d5e7a0c7b35b9add4ecb6717036f7204118a93 | 648ce64176410ff0fb397ea7b0c13b41ae588183 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/84 | ||||
14081129 | MDExOlB1bGxSZXF1ZXN0MTQwODExMjk= | 86 | closed | 0 | BUG: Zero dimensional variables couldn't be written to file or serialized. | akleeman 514053 | Fixed a bug in which writes would fail if Datasets contained 0d variables. Also added the ability to open Datasets directly from NetCDF3 bytestrings. | 2014-03-27T20:42:06Z | 2014-06-12T17:29:11Z | 2014-03-28T03:58:43Z | 2014-03-28T03:58:43Z | 6e5ba34ac1e034a6c1aea276231548850994e21e | 0 | 59acec9e9ee1def7df6bd570c110759a3760e7cb | f41f7f0d2937239e695bcdadc697ca688c62bf67 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/86 | ||||
14744392 | MDExOlB1bGxSZXF1ZXN0MTQ3NDQzOTI= | 102 | closed | 0 | Dataset.concat() can now automatically concat over non-equal variables. | akleeman 514053 | concat_over=True indicates that concat should concat over all variables that are not the same in the set of datasets that are to be concatenated. | 2014-04-14T22:19:02Z | 2014-06-12T17:33:49Z | 2014-04-23T03:24:45Z | 2014-04-23T03:24:45Z | 881122397cf3728b58856cca2986078bfa49c038 | 0 | b9635a53136126980080f4ff80e213c936a3c1e0 | 4713be2beef8c02818089da7c4d343669b59ff1b | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/102 | ||||
15767015 | MDExOlB1bGxSZXF1ZXN0MTU3NjcwMTU= | 125 | closed | 0 | Only copy datetime64 data if it is using non-nanosecond precision. | akleeman 514053 | In an attempt to coerce all datetime arrays to nano second resolutoin utils.as_safe_array() was creating copies of any datetime64 array (via the astype method). This was causing unexpected behavior (bugs) for things such as concatenation over times. (see below). ``` import xray import pandas as pd ds = xray.Dataset() ds['time'] = ('time', pd.date_range('2011-09-01', '2011-09-11')) times = [ds.indexed(time=[i]) for i in range(10)] ret = xray.Dataset.concat(times, 'time') print ret['time'] <xray.DataArray 'time' (time: 10)> array(['1970-01-02T07:04:40.718526408-0800', '1969-12-31T16:00:00.099966608-0800', '1969-12-31T16:00:00.041748384-0800', '1969-12-31T16:00:00.041748360-0800', '1969-12-31T16:00:00.041748336-0800', '1969-12-31T16:00:00.041748312-0800', '1969-12-31T16:00:00.041748288-0800', '1969-12-31T16:00:00.041748264-0800', '1969-12-31T16:00:00.041748240-0800', '1969-12-31T16:00:00.041748216-0800'], dtype='datetime64[ns]') Attributes: Empty ``` | 2014-05-12T13:36:22Z | 2014-05-20T19:09:40Z | 2014-05-20T19:09:40Z | e255f9e632bd646190ba6433599ccea7e122cc7f | 0 | d09708a119d8ca90298673ecd982414017ef53de | 8f667bef6e190764cdd801fc857f94f23c8a36c2 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/125 | |||||
16535481 | MDExOlB1bGxSZXF1ZXN0MTY1MzU0ODE= | 143 | closed | 0 | Fix decoded_cf_variable was not working. | akleeman 514053 | Small bug fix, and a test. | 2014-05-30T14:27:13Z | 2014-06-12T09:39:20Z | 2014-06-12T09:39:20Z | b77a8173175acc504ccf1203576b7be4b111da6e | 0 | 1ebd3a5df08605410d716a002de4e72072dbd7e8 | 71137d1e50116e5cca63d9b1c169844b5737cec2 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/143 | |||||
16896623 | MDExOlB1bGxSZXF1ZXN0MTY4OTY2MjM= | 150 | closed | 0 | Fix DecodedCFDatetimeArray was being incorrectly indexed. | akleeman 514053 | This was causing an error in the following situation: ``` ds = xray.Dataset() ds['time'] = ('time', [np.datetime64('2001-05-01') for i in range(5)]) ds['variable'] = ('time', np.arange(5.)) ds.to_netcdf('test.nc') ds = xray.open_dataset('./test.nc') ss = ds.indexed(time=slice(0, 2)) ss.dumps() ``` Thanks @shoyer for the fix. | 2014-06-09T17:25:05Z | 2014-06-09T17:43:50Z | 2014-06-09T17:43:50Z | 2014-06-09T17:43:50Z | 2ec8b7127f0d27683cb6d32da859a62e00ded6b9 | 0.2 650893 | 0 | 095e7070342a01ce5ee06a4cabd55087ad80395d | 3af0e34b90b8ec5436047419ad3ed2402ad5ff24 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/150 | |||
17045729 | MDExOlB1bGxSZXF1ZXN0MTcwNDU3Mjk= | 153 | closed | 0 | Fix decode_cf_variable. | akleeman 514053 | decode_cf_variable was still using da.data instead of da.values. It now also works with DataArray as input. | 2014-06-12T09:42:47Z | 2014-06-12T23:33:46Z | 2014-06-12T23:33:46Z | 05f01af1d6dffe8e3f23024e56d75806e5979fe5 | 0 | 16f17204f3d16485bdba1e1988a17bd6ab570502 | 606f388df0173c81feddd595a6af8e0ac986e830 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/153 | |||||
17082367 | MDExOlB1bGxSZXF1ZXN0MTcwODIzNjc= | 154 | closed | 0 | Fix decode_cf_variable, without tests | akleeman 514053 | same as #153, but without tests. | 2014-06-12T21:56:10Z | 2014-06-12T23:30:15Z | 2014-06-12T23:30:15Z | 2014-06-12T23:30:15Z | ce73ec55da14eb79c986058bf34d766c8142037d | 0 | dffb5ecac0188baae98e87d7a926db22dd723960 | 606f388df0173c81feddd595a6af8e0ac986e830 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/154 | ||||
17582684 | MDExOlB1bGxSZXF1ZXN0MTc1ODI2ODQ= | 175 | closed | 0 | Modular encoding | akleeman 514053 | Restructured Backends to make CF conventions handling consistent. Among other things this includes: - EncodedDataStores which can wrap other stores and allow for modular encoding/decoding. - Trivial indices ds['x'] = ('x', np.arange(10)) are no longer stored on disk and are only created when accessed. - AbstractDataStore API change. Shouldn't effect external users. - missing_value attributes now function like _FillValue All current tests are passing (though it could use more new ones). | 2014-06-25T10:37:41Z | 2014-10-08T20:44:15Z | 2014-10-08T20:44:15Z | 676a05aaa20fc74957bd029616ab21fb5b7c74e7 | 0 | 134d5ba9f6b44cb4298b374e91ce7da6a19fd8dc | 7e0e7b1f2b3663c9fddb7b9f1767e4e7f744d19c | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/175 | |||||
22450470 | MDExOlB1bGxSZXF1ZXN0MjI0NTA0NzA= | 248 | closed | 0 | Removed the object oriented encoding/decoding scheme | akleeman 514053 | Removed the object oriented encoding/decoding scheme in favor of a model where encoding/decoding happens when a dataset is stored to/ loaded from a DataStore. Conventions can now be enforced at the DataStore level by overwriting the Datastore.store() and Datastore.load() methods, or as an optional arg to Dataset.load_store, Dataset.dump_to_store. Includes miscellaneous cleanup. | 2014-10-08T20:06:33Z | 2014-10-08T20:12:56Z | 2014-10-08T20:12:56Z | 2014-10-08T20:12:56Z | 92d2dcac92d2b121b29da6d68d01eaf12805853e | 0 | c2e46d3b216d6da143c8f3c066e0ea000dff6ad8 | c185df55d9ccfdb62915c362a09bd724a73de2d4 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/248 | ||||
27392995 | MDExOlB1bGxSZXF1ZXN0MjczOTI5OTU= | 310 | closed | 0 | More robust CF datetime unit parsing | akleeman 514053 | This makes it possible to read datasets that don't follow CF datetime conventions perfectly, such as the following example which (surprisingly) comes from NCEP/NCAR (you'd think they would follow CF!) ``` ds = xray.open_dataset('http://thredds.ucar.edu/thredds/dodsC/grib/NCEP/GEFS/Global_1p0deg_Ensemble/members/GEFS_Global_1p0deg_Ensemble_20150114_1200.grib2/GC') print ds['time'].encoding['units'] u'Hour since 2015-01-14T12:00:00Z' ``` | 2015-01-14T23:19:07Z | 2015-01-14T23:36:34Z | 2015-01-14T23:35:27Z | 2015-01-14T23:35:27Z | 96f2c394961b37f6e1238539bb254259c543b8ff | shoyer 1217238 | 0.4 799013 | 0 | d5115cb1947b0679cc9998665a71f5d85e260623 | 4a4be4ace8f42dbc7c4ab016ab58a46812b37ad1 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/310 | ||
29864970 | MDExOlB1bGxSZXF1ZXN0Mjk4NjQ5NzA= | 334 | closed | 0 | Fix bug associated with reading / writing of mixed endian data. | akleeman 514053 | The right solution to this is to figure out how to successfully round trip endian-ness, but that seems to be a deeper issue inside netCDF4 (https://github.com/Unidata/netcdf4-python/issues/346) Instead we force all data to little endian before netCDF4 write. | 2015-02-24T01:57:43Z | 2015-02-26T04:45:18Z | 2015-02-26T04:45:18Z | 8634487c2196fc84708be8e49ce59213c7623dfc | 0.4 799013 | 0 | b2bec2f7a6e02b3994a8da47aa4845810baaf136 | 400317e9afbbfafacb3aea4ffd70e8790c936ee6 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/334 | ||||
30427125 | MDExOlB1bGxSZXF1ZXN0MzA0MjcxMjU= | 359 | closed | 0 | Raise informative exception when _FillValue and missing_value disagree | akleeman 514053 | Previously conflicting _FillValue and missing_value only raised an AssertionError, now it's more informative. | 2015-03-04T00:22:41Z | 2015-03-12T16:33:47Z | 2015-03-12T16:32:07Z | 2015-03-12T16:32:07Z | f1dbff3d12aa2f67c70a210651c31a37b60d838b | 0.4.1 1004936 | 0 | ec35efd763419f71fcb81a91a70251e55146f0e9 | 7187bb9af9b2fffedb931dcaa3766b58e769a13e | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/359 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [pull_requests] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [state] TEXT, [locked] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [body] TEXT, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [merged_at] TEXT, [merge_commit_sha] TEXT, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [draft] INTEGER, [head] TEXT, [base] TEXT, [author_association] TEXT, [auto_merge] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [url] TEXT, [merged_by] INTEGER REFERENCES [users]([id]) ); CREATE INDEX [idx_pull_requests_merged_by] ON [pull_requests] ([merged_by]); CREATE INDEX [idx_pull_requests_repo] ON [pull_requests] ([repo]); CREATE INDEX [idx_pull_requests_milestone] ON [pull_requests] ([milestone]); CREATE INDEX [idx_pull_requests_assignee] ON [pull_requests] ([assignee]); CREATE INDEX [idx_pull_requests_user] ON [pull_requests] ([user]);