pull_requests
12 rows where user = 4806877
This data as json, CSV (advanced)
Suggested facets: base, created_at (date), updated_at (date), closed_at (date), merged_at (date)
id ▼ | node_id | number | state | locked | title | user | body | created_at | updated_at | closed_at | merged_at | merge_commit_sha | assignee | milestone | draft | head | base | author_association | auto_merge | repo | url | merged_by |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
78510209 | MDExOlB1bGxSZXF1ZXN0Nzg1MTAyMDk= | 917 | closed | 0 | added to_dict function for xarray objects | jsignell 4806877 | After the conversation #432 | 2016-07-22T17:14:03Z | 2016-10-17T20:33:02Z | 2016-08-11T21:54:25Z | 2016-08-11T21:54:25Z | b708f71f05cccfc4c7063ea58c25c46cfe37dd8d | 0 | 592f7bcfcb97871caa6ec982587a6c853a7b8198 | 9fe2aff89494f0f268dc98bcb549246837d0ae89 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/917 | ||||
89891374 | MDExOlB1bGxSZXF1ZXN0ODk4OTEzNzQ= | 1052 | closed | 0 | catch numpy arrays in attrs before converting to dict | jsignell 4806877 | Makes it easier to dump to json (after conversation on #917) | 2016-10-18T20:22:50Z | 2016-10-25T18:19:50Z | 2016-10-25T18:19:45Z | 2016-10-25T18:19:45Z | 293922eba4f5856e23c56a7f9c63482e1f47decb | 0 | f4ce8a8bfb3af90a8f7e5dedd2b50465a42e6b82 | 62a7f2c00caacb5b917ff320e28aca9cb4396649 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/1052 | ||||
148502414 | MDExOlB1bGxSZXF1ZXN0MTQ4NTAyNDE0 | 1654 | closed | 0 | [DOCS] PyNIO is now available on conda-forge | jsignell 4806877 | Just a docs change. Updated instructions for installing PyNIO to use conda-forge. | 2017-10-24T20:19:28Z | 2017-10-24T20:20:02Z | 2017-10-24T20:19:59Z | 2017-10-24T20:19:59Z | 177b864333a61eb5c53b589c1a3cf48591d19b0d | 0 | ab4896ab911c88fa0b2a32dc88cb56dca625f156 | 423d3902ae432989a8a28bf9608621805d7095c5 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/1654 | ||||
209931263 | MDExOlB1bGxSZXF1ZXN0MjA5OTMxMjYz | 2375 | closed | 0 | Make `dim` optional on unstack | jsignell 4806877 | - [x] Tests added (for all bug fixes or enhancements) - [x] Tests passed (for all non-documentation changes) - [x] Fully documented, including `whats-new.rst` for all changes and `api.rst` for new API (remove if this change should not be visible to users, e.g., if it is an internal clean-up, or if this is part of a larger project that will be documented later) Not sure if this is a desirable change but I thought it could be easily discussed as a PR. Just for context I was looking at flattening spatial data for machine learning pipelines and then reshaping after the output had been acquired. I have a NxM array called `b` and am flattening it like: ```python flat_input = b.stack(z=('y', 'x')) ``` Then I use that flat_input in my ML pipeline and get back an `np.array` (called `output`) which I want to unstack using all the metadata that went into stacking my original NxM array b. ```python xr.full_like(flat_input, output).unstack(dim='z') ``` This PR just makes the `dim` argument optional in unstack so that we can use ```python xr.full_like(flat_input, output).unstack() ``` As a follow on PR I was thinking of making a function called `xr.unstack_like(other: xr.DataArray|xr.Dataset, data: array_like)` to encompass this functionality. A couple questions: 1) Would something like `xr.unstack_like` be desirable? 2) Should we be using `xr.full_like` in this way? The documentation in xarray and numpy only mentions scalars, but arrays work fine in both. If this is a supported behavior I could add docs, and if not perhaps a copy and overwrite is a better approach? Here is a gist of the workflow using a tweaked datashader example and datashader example data https://gist.github.com/jsignell/79a6cf2da5c1458211d9dcf34d4417df | 2018-08-21T19:29:06Z | 2018-09-05T16:01:23Z | 2018-09-05T15:19:07Z | 2018-09-05T15:19:07Z | 73f5b02a42a4003815d2bfc91e658195f5050be1 | 0 | 7ec32529652c9b19b18e747154a31b20d2c57b6e | 69086b332c6c950587830b266df4e624c2106d89 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/2375 | ||||
211114053 | MDExOlB1bGxSZXF1ZXN0MjExMTE0MDUz | 2384 | closed | 0 | Adding data kwarg to copy to create new objects with same structure as original | jsignell 4806877 | - [x] Tests added (for all bug fixes or enhancements) - [x] Tests passed (for all non-documentation changes) - [x] Fully documented, including `whats-new.rst` for all changes and `api.rst` for new API (remove if this change should not be visible to users, e.g., if it is an internal clean-up, or if this is part of a larger project that will be documented later) This is a PR for the follow on work set out in https://github.com/pydata/xarray/pull/2375#issuecomment-415227870 | 2018-08-27T13:42:28Z | 2018-09-19T13:04:39Z | 2018-09-19T01:19:08Z | 2018-09-19T01:19:08Z | b679f4a9edb2437d11f28bf6516fc7aa8d673acb | 0 | 5f6ce936fac62c295ffede2470d5b4f04bfb315c | 4de8dbc3b1de461c0c9d3b002e55d60b46d2e6d2 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/2384 | ||||
239651957 | MDExOlB1bGxSZXF1ZXN0MjM5NjUxOTU3 | 2618 | closed | 0 | Adding mask to open_rasterio | jsignell 4806877 | <!-- Feel free to remove check-list items aren't relevant to your change --> - [x] Discussed in #1736 - [x] Tests added - [ ] Fully documented, including `whats-new.rst` for all changes and `api.rst` for new API Not sure if this is the right approach @snowman2 | 2018-12-18T22:24:04Z | 2021-06-24T13:44:33Z | 2021-06-23T16:14:28Z | c8a656c6e48b8bdbccc58fb8a001bf40e7c5d998 | 0 | 68bdc7f8a50cbfa3c12832fb82d2104fec8971ac | 6d93a95d05bdbfc33fff24064f67d29dd891ab58 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/2618 | |||||
330694079 | MDExOlB1bGxSZXF1ZXN0MzMwNjk0MDc5 | 3425 | closed | 0 | Html repr | jsignell 4806877 | <!-- Feel free to remove check-list items aren't relevant to your change --> This PR supersedes #1820 - see that PR for original discussion. See [this gist](https://nbviewer.jupyter.org/gist/jsignell/2b7843a6e4852198bf963fbd299e8d46) to try out the new MultiIndex and options functionality. - [x] Closes #1627, closes #1820 - [x] Tests added - [x] Passes `black . && mypy . && flake8` - [x] Fully documented, including `whats-new.rst` for all changes and `api.rst` for new API TODO: - [x] Add support for Multi-indexes - [x] Probably good to have some opt-in or fail back system in case where we (or users) know that the rendering will not work - [x] Add some tests | 2019-10-21T21:08:54Z | 2019-10-25T07:00:26Z | 2019-10-24T16:48:47Z | 2019-10-24T16:48:46Z | ba48fbcd6ee14e0bbd8887a970a1125fde6769f0 | 0 | 1d960933ab252e0f79f7e050e6c9261d55568057 | 652dd3ca77dd19bbd1ab21fe556340c1904ec382 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/3425 | ||||
332152088 | MDExOlB1bGxSZXF1ZXN0MzMyMTUyMDg4 | 3443 | closed | 0 | jupyterlab dark theme | jsignell 4806877 | <!-- Feel free to remove check-list items aren't relevant to your change --> - [ ] Closes #xxxx - [ ] Tests added - [x] Passes `black . && mypy . && flake8` - [ ] Fully documented, including `whats-new.rst` for all changes and `api.rst` for new API Follow on to #3425 to include support for jupyterlab dark theme. Note that this includes slight color changes. The most striking of which is that in jupyterlab light and regular notebook the even rows are white like the background. ## Jlab dark <img width="766" alt="Screen Shot 2019-10-24 at 12 57 56 PM" src="https://user-images.githubusercontent.com/4806877/67508281-b70dbb80-f65e-11e9-83a0-37407d0052c1.png"> ## Jlab light <img width="770" alt="Screen Shot 2019-10-24 at 12 58 34 PM" src="https://user-images.githubusercontent.com/4806877/67508283-b9701580-f65e-11e9-855c-17d3d5e5d136.png"> ## notebook <img width="775" alt="Screen Shot 2019-10-24 at 1 04 13 PM" src="https://user-images.githubusercontent.com/4806877/67508341-d6a4e400-f65e-11e9-8396-f584ee193eda.png"> | 2019-10-24T17:08:27Z | 2019-10-29T03:47:28Z | 2019-10-29T03:47:28Z | 2019-10-29T03:47:28Z | 43d07b7b1d389a4bfc95c920149f4caa78653e81 | 0 | 60218fb5e7ec71ba4bc8398adf41e0ea8d4f61a6 | ba48fbcd6ee14e0bbd8887a970a1125fde6769f0 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/3443 | ||||
332226754 | MDExOlB1bGxSZXF1ZXN0MzMyMjI2NzU0 | 3444 | closed | 0 | Escaping dtypes | jsignell 4806877 | <!-- Feel free to remove check-list items aren't relevant to your change --> - [ ] Closes #xxxx - [x] Tests added - [x] Passes `black . && mypy . && flake8` - [ ] Fully documented, including `whats-new.rst` for all changes and `api.rst` for new API Follow-on to https://github.com/pydata/xarray/pull/3425 to make html_repr work with dtypes like '<U5' | 2019-10-24T20:24:33Z | 2019-10-24T21:51:18Z | 2019-10-24T21:50:20Z | 2019-10-24T21:50:20Z | bb0a5a2b1c71f7c2622543406ccc82ddbb290ece | 0 | 89fe8bbd42f5104d095d67c48feef6f8c4f558e9 | ba48fbcd6ee14e0bbd8887a970a1125fde6769f0 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/3444 | ||||
381597390 | MDExOlB1bGxSZXF1ZXN0MzgxNTk3Mzkw | 3812 | closed | 0 | Turn on html repr by default | jsignell 4806877 | <!-- Feel free to remove check-list items aren't relevant to your change --> - [x] Closes #3806 - [x] Passes `isort -rc . && black . && mypy . && flake8` - [x] Fully documented, including `whats-new.rst` for all changes and `api.rst` for new API | 2020-02-28T21:12:43Z | 2020-03-26T02:19:22Z | 2020-03-02T23:01:44Z | 2020-03-02T23:01:44Z | b155853ff6e17172b1b6b16c0da31522718e9409 | 0 | a225878a0912968c022bbf4887f1bb82e9dfc811 | 8512b7bf498c0c300f146447c0b05545842e9404 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/3812 | ||||
993569436 | PR_kwDOAMm_X847OKqc | 6774 | closed | 0 | Make the `sel` error more descriptive when `method` is unset | jsignell 4806877 | - [x] Tests added This came up in the tutorial and I was wondering if the error could be made a little clearer. Not sure if the error message should hint that a user might want to use ``method``. ```python import numpy as np import pandas as pd import xarray as xr arr = xr.DataArray( data=np.arange(48).reshape(4, 2, 6), dims=("u", "v", "time"), coords={ "u": [-3.2, 2.1, 5.3, 6.5], "v": [-1, 2.6], "time": pd.date_range("2009-01-05", periods=6, freq="M"), }, ) arr.sel(u=5, time="2009-04-28") # I removed `method="nearest"` ``` Before this PR: ```python-traceback ... KeyError: 5.0 ``` After this PR: ```python-traceback ... KeyError: "not all values found in index 'u'. Did you mean to set `method=`?" ``` | 2022-07-11T21:17:07Z | 2022-07-13T14:49:24Z | 2022-07-12T20:33:00Z | 2022-07-12T20:33:00Z | 4aae7fd0c39d4462d745dffc6c1eb880a5efa973 | 0 | ecc3683ac13469301b6bccb4b7eb580b9fc464d7 | 7cc6cc991e586a6158bb656b8001234ccda25407 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/6774 | ||||
998210728 | PR_kwDOAMm_X847f3yo | 6792 | closed | 0 | Raise an error if you pass an invalid key in `chunks` | jsignell 4806877 | - [x] Tests added This was a minor issue that came up at the Dask BOF. Currently if the key of chunks dict isn't included in the dims then it gets silently ignored. This PR makes xarray raise an error instead. I'm not sure if this is the right place to put this change. So just let me know if it should go somewhere else. I changed an existing test. I am _pretty_ sure it was not intentionally using a key that isn't in the dims. | 2022-07-15T21:23:20Z | 2022-08-02T15:57:50Z | 2022-07-22T16:52:32Z | 640ceb9fd05550e9fc8d75e1f2e28559f448f8b9 | 0 | 6300884e581848748846983475bf00ad930bb4ef | 5678b758bff24db28b53217c70da00c2fc0340a3 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/6792 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [pull_requests] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [state] TEXT, [locked] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [body] TEXT, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [merged_at] TEXT, [merge_commit_sha] TEXT, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [draft] INTEGER, [head] TEXT, [base] TEXT, [author_association] TEXT, [auto_merge] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [url] TEXT, [merged_by] INTEGER REFERENCES [users]([id]) ); CREATE INDEX [idx_pull_requests_merged_by] ON [pull_requests] ([merged_by]); CREATE INDEX [idx_pull_requests_repo] ON [pull_requests] ([repo]); CREATE INDEX [idx_pull_requests_milestone] ON [pull_requests] ([milestone]); CREATE INDEX [idx_pull_requests_assignee] ON [pull_requests] ([assignee]); CREATE INDEX [idx_pull_requests_user] ON [pull_requests] ([user]);