home / github

Menu
  • GraphQL API
  • Search all tables

pull_requests

Table actions
  • GraphQL API for pull_requests

2 rows where user = 1005109

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date), closed_at (date), merged_at (date)

id ▼ node_id number state locked title user body created_at updated_at closed_at merged_at merge_commit_sha assignee milestone draft head base author_association auto_merge repo url merged_by
434586489 MDExOlB1bGxSZXF1ZXN0NDM0NTg2NDg5 4155 closed 0 Implement interp for interpolating between chunks of data (dask) pums974 1005109 In a project of mine I need to interpolate a dask-based xarray between chunk of data. When using the current official `interp` function (xarray v0.15.1), the code: ```python datax = xr.DataArray(data=da.from_array(np.arange(0, 4), chunks=2), coords={"x": np.linspace(0, 1, 4)}, dims="x") datay = xr.DataArray(data=da.from_array(np.arange(0, 4), chunks=2), coords={"y": np.linspace(0, 1, 4)}, dims="y") data = datax * datay # both of these interp call fails res = datax.interp(x=np.linspace(0, 1)) print(res.load()) res = data.interp(x=np.linspace(0, 1), y=0.5) print(res.load()) ``` fails with `NotImplementedError: Chunking along the dimension to be interpolated (0) is not yet supported.`, but succeed with this version I also want to alert that my version does not work with "advanced interpolation" (as shown in the xarray documentation) Also, my version cannot be used to make `interpolate_na` work with chunked data <!-- Feel free to remove check-list items aren't relevant to your change --> - [x] Closes #4078 - [x] Tests added - [x] Passes `isort -rc . && black . && mypy . && flake8` - [x] Fully documented, including `whats-new.rst` for all changes and `api.rst` for new API 2020-06-15T14:42:32Z 2020-09-06T12:27:15Z 2020-08-11T23:15:49Z 2020-08-11T23:15:48Z 7daad4fce3bf8ad9b9bc8e7baa104c476437e68d     0 b60cddf176d0524ed0a09c3cbb9a5acb76449e76 a198218ddabe557adbb04311b3234ec8d20419e7 CONTRIBUTOR   xarray 13221727 https://github.com/pydata/xarray/pull/4155  
787098153 PR_kwDOAMm_X84u6iop 6019 closed 0 Use complex nan by default when interpolating out of bounds pums974 1005109 - [X] Tests added - [X] Passes `pre-commit run --all-files` - [x] User visible changes (including notable bug fixes) are documented in `whats-new.rst` When using the `da.interp` to interpolate outside of the bounds, by default, `fill_value` is set to `np.nan` to set the values to NaN. This is completely fine with real values, but with complex values this will in fact set the values to `np.nan + 0j` which can be a source of confusion and bugs. This PR propose to detect if values are complex, and if so, to use `np.nan + np.nan*1j` as the default `fill_value` 2021-11-23T15:38:25Z 2021-11-28T04:40:06Z 2021-11-28T04:40:06Z 2021-11-28T04:40:06Z fb01c72626a61310f874664cdb4d7b4c1b327bb3     0 93ef228399cdd9aff2c53c924e3b131bf8d9696f dc68e0c997495f4a5966433ee602df548e9a0108 CONTRIBUTOR   xarray 13221727 https://github.com/pydata/xarray/pull/6019  

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [pull_requests] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [state] TEXT,
   [locked] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [body] TEXT,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [merged_at] TEXT,
   [merge_commit_sha] TEXT,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [draft] INTEGER,
   [head] TEXT,
   [base] TEXT,
   [author_association] TEXT,
   [auto_merge] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [url] TEXT,
   [merged_by] INTEGER REFERENCES [users]([id])
);
CREATE INDEX [idx_pull_requests_merged_by]
    ON [pull_requests] ([merged_by]);
CREATE INDEX [idx_pull_requests_repo]
    ON [pull_requests] ([repo]);
CREATE INDEX [idx_pull_requests_milestone]
    ON [pull_requests] ([milestone]);
CREATE INDEX [idx_pull_requests_assignee]
    ON [pull_requests] ([assignee]);
CREATE INDEX [idx_pull_requests_user]
    ON [pull_requests] ([user]);
Powered by Datasette · Queries took 5441.084ms · About: xarray-datasette