home / github

Menu
  • GraphQL API
  • Search all tables

pull_requests

Table actions
  • GraphQL API for pull_requests

17 rows where milestone = 987654

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: body, base, created_at (date), updated_at (date), closed_at (date), merged_at (date)

id ▼ node_id number state locked title user body created_at updated_at closed_at merged_at merge_commit_sha assignee milestone draft head base author_association auto_merge repo url merged_by
31900191 MDExOlB1bGxSZXF1ZXN0MzE5MDAxOTE= 381 closed 0 WIP: support dask.array in xray objects shoyer 1217238 xref #328 2015-03-25T08:00:50Z 2015-04-08T03:44:08Z 2015-04-08T03:44:08Z 2015-04-08T03:44:08Z e7cbe4eec70e2b9ffefb8cd7da2ea25fa02312dd   0.5 987654 0 f1d463f7a370794dd053ce0f91460dd9fce2866c 0d164d848401209971ded33aea2880c1fdc892cb MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/381  
32913820 MDExOlB1bGxSZXF1ZXN0MzI5MTM4MjA= 384 closed 0 Fixes for dataset formatting shoyer 1217238 The previous tests were actually not being run because I named the test method incorrectly :( 2015-04-08T23:53:40Z 2015-04-09T02:21:03Z 2015-04-09T02:21:00Z 2015-04-09T02:21:00Z ce9ab59a90b5dd816a3bd0f7d8b80afe5b09794b   0.5 987654 0 8d6b92351961150ed91e2ed47a7e4cdf695aaafd 0cd100effc3866ed083c366723da0b502afa5a96 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/384  
33720458 MDExOlB1bGxSZXF1ZXN0MzM3MjA0NTg= 395 closed 0 Update xray to use updated dask.array and h5netcdf on pypi shoyer 1217238 This involves a big internal rename: `block` -> `chunk` 2015-04-21T00:54:35Z 2015-04-21T01:07:03Z 2015-04-21T01:07:02Z 2015-04-21T01:07:02Z 006907354ed6ff8a9932a7e87a7da86a6a89d3da   0.5 987654 0 bca4d336be40012b8d9a95ab8f9775e70024d62f 61ad5b229cf9eb9ceb2f204d14336049da62cf73 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/395  
33734454 MDExOlB1bGxSZXF1ZXN0MzM3MzQ0NTQ= 396 closed 0 Add nbytes property shoyer 1217238   2015-04-21T07:14:00Z 2015-04-21T07:20:25Z 2015-04-21T07:20:23Z 2015-04-21T07:20:23Z dca6df4d681ffdc8e6f358a574b925950283bc7f   0.5 987654 0 5533e417c2c9926aaf43a04fa09026030af942a7 c8674c8b5062e637da000930e50814cbf0b6427c MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/396  
33735296 MDExOlB1bGxSZXF1ZXN0MzM3MzUyOTY= 397 closed 0 Simplify load_data now that dask bugs have been fixed shoyer 1217238   2015-04-21T07:30:12Z 2015-04-21T07:35:49Z 2015-04-21T07:35:47Z 2015-04-21T07:35:47Z 4a811765d3100bbfc2815c09ecb280165a8d0563   0.5 987654 0 4ed6720fa0679cb2834d56b3a65dff3afb4ee806 06537f3c533c30ea087f6093cb79dc9e1a540865 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/397  
33812134 MDExOlB1bGxSZXF1ZXN0MzM4MTIxMzQ= 398 closed 0 Rename .load_data() to the more succinct .load() shoyer 1217238 Also rename `.chunk_data()` -> `.chunk()` (but nobody is using that, yet). 2015-04-21T23:01:46Z 2015-04-22T00:46:09Z 2015-04-22T00:46:08Z 2015-04-22T00:46:08Z 03297fd91f50c69270759d1232a6bb1772275f6b   0.5 987654 0 83afc872fe6d38ed851d7aeddced96992c9dbfd0 1c37bdb3fccd69b5727b3abbe16b7be067432361 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/398  
33824307 MDExOlB1bGxSZXF1ZXN0MzM4MjQzMDc= 399 closed 0 Dataset.to_array and DataArray.to_dataset methods shoyer 1217238 These methods make it easy to switch back and forth between data arrays and datasets: ``` In [4]: ds = xray.Dataset({'a': 1, 'b': ('x', [1, 2, 3])}, ...: coords={'c': 42}, attrs={'Conventions': 'None'}) ...: In [5]: ds.to_array() Out[5]: <xray.DataArray (variables: 2, x: 3)> array([[1, 1, 1], [1, 2, 3]]) Coordinates: c int64 42 * x (x) int64 0 1 2 * variables (variables) |S1 'a' 'b' Attributes: Conventions: None In [6]: ds.to_array().to_dataset(dim='variables') Out[6]: <xray.Dataset> Dimensions: (x: 3) Coordinates: c int64 42 * x (x) int64 0 1 2 Data variables: a (x) int64 1 1 1 b (x) int64 1 2 3 Attributes: Conventions: None ``` Fixes #132 CC @IamJeffG 2015-04-22T03:59:56Z 2015-04-22T04:34:56Z 2015-04-22T04:34:54Z 2015-04-22T04:34:54Z a55a0879dc62a265ae37bd76d540f89566adde82   0.5 987654 0 5865da64427fd7b65d47f670e63ba43daaf5e4cb 24f34c06df42bb302cbe2f585677c2fd30adcc3a MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/399  
33921597 MDExOlB1bGxSZXF1ZXN0MzM5MjE1OTc= 400 closed 0 H5nc cleanup shoyer 1217238 Fixes #369 2015-04-23T03:33:44Z 2015-04-23T03:41:19Z 2015-04-23T03:41:15Z 2015-04-23T03:41:15Z 9d9dc9a9a4b9d053939f0f99a092157b16669909   0.5 987654 0 053a6b6bad4a304a399c5354026211721e3c8b1a ca91321f7c6a43ebd0cd478406519d0ad1e7b6a1 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/400  
34325901 MDExOlB1bGxSZXF1ZXN0MzQzMjU5MDE= 403 closed 0 Fix indexing remote datasets with pydap shoyer 1217238   2015-04-29T00:50:32Z 2015-04-29T00:55:17Z 2015-04-29T00:55:16Z 2015-04-29T00:55:16Z 7017e6bb2628ad68d74acd065446721a2f8aec8c   0.5 987654 0 0b7196c5bb770815bffcacae95505a0f5d9f66ef 6d83527afc1cae83ad4073ff9cebfeb1b053b16b MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/403  
34407801 MDExOlB1bGxSZXF1ZXN0MzQ0MDc4MDE= 405 closed 0 Add robust retry logic when accessing remote datasets shoyer 1217238 Accessing data from remote datasets now has retrying logic (with exponential backoff) that should make it robust to occasional bad responses from DAP servers. 2015-04-29T21:25:47Z 2015-05-01T20:33:46Z 2015-05-01T20:33:45Z 2015-05-01T20:33:45Z ab329a6dd7c78f6580c34aa7e02b0a38800879d4   0.5 987654 0 06103f1663473b5e4993d2951d91beb872fa1a01 ce7ae0d4aa239088193cb84cbfd0c19033ad0bd0 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/405  
34482215 MDExOlB1bGxSZXF1ZXN0MzQ0ODIyMTU= 407 closed 0 Support reading and writing milliseconds/microseconds shoyer 1217238 Fixes #406. 2015-04-30T17:28:26Z 2015-05-01T20:33:53Z 2015-05-01T20:33:10Z 2015-05-01T20:33:10Z 84f7424574bf822b93195f643e3f28ebde857948   0.5 987654 0 3324d672a100dd0ab8853ee39e4efa37bdc193e3 ce7ae0d4aa239088193cb84cbfd0c19033ad0bd0 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/407  
34620014 MDExOlB1bGxSZXF1ZXN0MzQ2MjAwMTQ= 408 closed 0 Improved docs for dask integration shoyer 1217238   2015-05-04T07:40:49Z 2015-05-04T08:12:59Z 2015-05-04T08:12:57Z 2015-05-04T08:12:57Z 8b39af711d9869d20877705901d9801332dff35b   0.5 987654 0 83f2e687b797eeab71d55eb778e452452e48826c 755e2595519c749d270dd6f1c30e6019de6df1d1 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/408  
35055251 MDExOlB1bGxSZXF1ZXN0MzUwNTUyNTE= 409 closed 0 Add display_width option shoyer 1217238 Example usage: ``` In [12]: ds = xray.Dataset({'x': np.arange(1000)}) In [13]: with xray.set_options(display_width=40): ....: print(ds) ....: <xray.Dataset> Dimensions: (x: 1000) Coordinates: * x (x) int64 0 1 2 3 4 5 6 ... Data variables: *empty* In [14]: with xray.set_options(display_width=60): ....: print(ds) ....: <xray.Dataset> Dimensions: (x: 1000) Coordinates: * x (x) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ... Data variables: *empty* ``` 2015-05-08T23:27:55Z 2015-05-12T04:19:28Z 2015-05-12T04:17:22Z 2015-05-12T04:17:22Z 5cc5d486e9f22ccdd5289fda8063b0d4eb9bf7fc   0.5 987654 0 46026f23ee3395e64765cadcee1fd2af66cd5c62 52e1fddd46cfb9be83de2f68e9b145b72eb90a71 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/409  
35192074 MDExOlB1bGxSZXF1ZXN0MzUxOTIwNzQ= 410 closed 0 ENH: Add .sel() method to Dataset and DataArray shoyer 1217238 sel() now supports the method parameter, which works like the paramter of the same name on reindex(). It provides a simple interface for doing nearest- neighbor interpolation: ``` In [12]: ds.sel(x=1.1, method='nearest') Out[12]: <xray.Dataset> Dimensions: () Coordinates: x int64 1 Data variables: y int64 2 In [13]: ds.sel(x=[1.1, 2.1], method='pad') Out[13]: <xray.Dataset> Dimensions: (x: 2) Coordinates: * x (x) int64 1 2 Data variables: y (x) int64 2 3 ``` 2015-05-12T04:17:36Z 2015-05-14T02:27:45Z 2015-05-14T02:27:43Z 2015-05-14T02:27:43Z 94630c550610ace2450e9e8955963306576f1c47   0.5 987654 0 abe5e1dce4bc1d4a5b02a95cb02d7b1b6c53b495 b34d4c24b2ac6bf79ac30dda3cb204885a4e73cf MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/410  
36578409 MDExOlB1bGxSZXF1ZXN0MzY1Nzg0MDk= 412 closed 0 Doc updates shoyer 1217238   2015-05-31T07:41:07Z 2015-05-31T23:45:06Z 2015-05-31T23:45:04Z 2015-05-31T23:45:04Z 9b296daa44562f997d1418929c67a88db4326bb1   0.5 987654 0 78f7934067fa8d9dd16e8f44befe31914452bad3 9073b593cfde1ec7e2e15a8faf070102280cede0 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/412  
36594751 MDExOlB1bGxSZXF1ZXN0MzY1OTQ3NTE= 413 closed 0 More doc updates for 0.5 shoyer 1217238   2015-06-01T02:09:49Z 2015-06-01T02:12:29Z 2015-06-01T02:12:27Z 2015-06-01T02:12:27Z ddc115a8ca8edc6444b93b8691f3001bad986d54   0.5 987654 0 dcb6a9fcb9b6bd1d9d41baab1141417583325ef4 4ab3354b74deedf0ea28d23242d2932b317d3de0 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/413  
36599902 MDExOlB1bGxSZXF1ZXN0MzY1OTk5MDI= 414 closed 0 Doc updates 3 shoyer 1217238   2015-06-01T05:30:50Z 2015-06-01T05:33:24Z 2015-06-01T05:33:17Z 2015-06-01T05:33:17Z 0ad66a4a91278b1422fcfcee5bbb07d2fd3200ea   0.5 987654 0 587bd7a6476bac369af44bc42b1d6b884d129bc9 b11d305188e33f2dd4c4344b4f8f3c234cc1fb65 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/414  

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [pull_requests] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [state] TEXT,
   [locked] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [body] TEXT,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [merged_at] TEXT,
   [merge_commit_sha] TEXT,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [draft] INTEGER,
   [head] TEXT,
   [base] TEXT,
   [author_association] TEXT,
   [auto_merge] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [url] TEXT,
   [merged_by] INTEGER REFERENCES [users]([id])
);
CREATE INDEX [idx_pull_requests_merged_by]
    ON [pull_requests] ([merged_by]);
CREATE INDEX [idx_pull_requests_repo]
    ON [pull_requests] ([repo]);
CREATE INDEX [idx_pull_requests_milestone]
    ON [pull_requests] ([milestone]);
CREATE INDEX [idx_pull_requests_assignee]
    ON [pull_requests] ([assignee]);
CREATE INDEX [idx_pull_requests_user]
    ON [pull_requests] ([user]);
Powered by Datasette · Queries took 3040.673ms · About: xarray-datasette