home / github

Menu
  • GraphQL API
  • Search all tables

pull_requests

Table actions
  • GraphQL API for pull_requests

18 rows where milestone = 836999

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: body, base, created_at (date), updated_at (date), closed_at (date), merged_at (date)

id ▼ node_id number state locked title user body created_at updated_at closed_at merged_at merge_commit_sha assignee milestone draft head base author_association auto_merge repo url merged_by
21565728 MDExOlB1bGxSZXF1ZXN0MjE1NjU3Mjg= 236 closed 0 WIP: convert to/from cdms2 variables shoyer 1217238 Fixes #133 @DamienIrving am I missing anything obvious here? 2014-09-22T08:48:52Z 2014-12-19T09:11:42Z 2014-12-19T09:11:39Z 2014-12-19T09:11:39Z d1099053c9ebbb1169f72fb301913899453fd5ef   0.3.2 836999 0 784e24435c2cfddc3cdaab1866d2d8d7ee8eadd5 731a0e2b20fac802a6ce7899b1bb3ba14eb3cad0 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/236  
23436973 MDExOlB1bGxSZXF1ZXN0MjM0MzY5NzM= 269 closed 0 Fixes for dtype casting shoyer 1217238 Fixes #264 Fixes #259 (casting of masked arrays) 2014-10-28T06:37:55Z 2014-10-28T06:47:50Z 2014-10-28T06:47:38Z 2014-10-28T06:47:38Z 9d4bef67bfa3108f605912a5e3a01b821f6a2ab4   0.3.2 836999 0 6eacd47b9575fb44792f225494834497e1c7978c ee1369f72f20dad6331aa96710cc9f3237b195ec MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/269  
23559561 MDExOlB1bGxSZXF1ZXN0MjM1NTk1NjE= 270 closed 0 Fix guess_time_units if NaT is present shoyer 1217238   2014-10-29T19:54:05Z 2014-10-29T20:09:18Z 2014-10-29T20:07:02Z 2014-10-29T20:07:02Z 6a2966925b4cfde53c8d9182156fab1f0c97070b   0.3.2 836999 0 5c8a89ff4e781e22c3a1ef3f97564d71819e912f 4e06b33fd9e2848caae50ca48c126a749bf2d9a5 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/270  
23575223 MDExOlB1bGxSZXF1ZXN0MjM1NzUyMjM= 271 closed 0 Add backends integration test for roundtripping datetime arrays shoyer 1217238 Not sure how we missed this before. Also includes a fix for writing datetime arrays with missing values. 2014-10-30T00:19:58Z 2014-10-30T02:32:23Z 2014-10-30T02:32:21Z 2014-10-30T02:32:21Z faa1de8ebcd6a20348c86df717dfd0bda2f019c7   0.3.2 836999 0 4e31557f9a55af9926c0bd14b9426728c8ae25d9 fdb4d455937636bb3d1722b78009b23341b77f78 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/271  
25319567 MDExOlB1bGxSZXF1ZXN0MjUzMTk1Njc= 282 closed 0 Serialize non-index coordinates to netCDF files shoyer 1217238 Fixes #231 This PR ensures non-index coordinates can be roundtripped to netCDF and back by using the CF convention of the 'coordinates' attribute on a "data variable". In cases where there are no data variables available, we fall back to the (extended, non-CF) convention of saving 'coordinates' as a global attribute. I also added the `xray.decode_cf` function to the API. This function can decode either datasets or datastores into decoded datasets, which is handy, for example, if a dataset is serialized according to CF conventions but already in memory (e.g., saved in JSON). @akleeman: I could use some guidance from you on want to do about `test_roundtrip_coordinates` on `TestCFEncodedDataStore`. I am tentatively skipping it, but it would be nice to get it working. To do so will require some tweaks to the API for the `Datastore.load` method. 2014-12-02T05:11:23Z 2014-12-07T02:44:14Z 2014-12-07T02:44:11Z 2014-12-07T02:44:11Z 8b25628a5cad01444dc957c44399bcbcc577af18   0.3.2 836999 0 e1000d680cc9fee011ec0eff29b3ae2f9017d7f9 a5837164f80a4bffcfda52a3edcc4f40c947d336 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/282  
25547586 MDExOlB1bGxSZXF1ZXN0MjU1NDc1ODY= 285 closed 0 Fix to_netcdf with 0d sting variables shoyer 1217238 Fixes #284 2014-12-05T03:29:54Z 2014-12-05T03:57:18Z 2014-12-05T03:57:16Z 2014-12-05T03:57:16Z 353d1bf952659ef188568a7a9d490c29882b34d7   0.3.2 836999 0 f8022ac535c4854c9d123ef39f1dab74f1c8edba a5837164f80a4bffcfda52a3edcc4f40c947d336 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/285  
25627557 MDExOlB1bGxSZXF1ZXN0MjU2Mjc1NTc= 287 closed 0 Fixes for Dataset.to_dataframe() shoyer 1217238 Fixes #278 2014-12-07T03:24:55Z 2014-12-07T06:22:51Z 2014-12-07T06:22:47Z 2014-12-07T06:22:47Z 94033ffe16a48f7ad15ed91b66735a05bc5be5e8   0.3.2 836999 0 69ea1a09b90614242adca4314f827f437bbefb4b b9b9b9c984c2ea0d796f6d6d45e15a63d32b5926 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/287  
25630036 MDExOlB1bGxSZXF1ZXN0MjU2MzAwMzY= 288 closed 0 Add optional dependency on cyordereddict shoyer 1217238 This makes indexing a dataset (`ds['foo']`) about 30% faster in cases where `cyordereddict` is available. 2014-12-07T09:15:35Z 2014-12-07T09:53:51Z 2014-12-07T09:53:49Z 2014-12-07T09:53:49Z 8c2715459fb7fa991a2c3fa167c6d9ae4d073b73   0.3.2 836999 0 07823e96533e2dc6c870d3a372e2ee283f7312d5 2a8f1860d93ea9e2635044ad44dc859c67a6ac90 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/288  
25798861 MDExOlB1bGxSZXF1ZXN0MjU3OTg4NjE= 289 closed 0 Faster path for Dataset/DataArray indexing shoyer 1217238 My benchmark shows this commit makes things about 35% faster for positional indexing. 2014-12-10T04:48:31Z 2014-12-10T04:53:17Z 2014-12-10T04:53:15Z 2014-12-10T04:53:15Z fe1ce8fbc4aa366e37ab6d72b04914359f581528   0.3.2 836999 0 a5528b44a95f4973ebe6546b1f143da1c8c19886 8e56736a87e53322c5bd8e3e20cf92ec352548f2 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/289  
25802877 MDExOlB1bGxSZXF1ZXN0MjU4MDI4Nzc= 291 closed 0 Support using dictionaries for labeled indexing shoyer 1217238 Fixes #187 As of this change, you can use dictionaries for indexing along a dimension, e.g., in the form `array.loc[dict(x='2000-01-01')]` or `array[dict(x=0)]`. In particular, you can use this for _assignment_, not just for selecting values (e.g., `array[dict(x=0)] = 0`). It was previously difficult to do assignment with labeled dimensions in xray. 2014-12-10T07:14:47Z 2014-12-11T22:28:26Z 2014-12-11T22:28:19Z 2014-12-11T22:28:19Z 4564915e1fdf08baed1def669d8f453393aae66a   0.3.2 836999 0 967809a1217694a31fd9b3c918ecb2bea20b5411 412215858a6c14b1354bf1a7c91c0177189a06c2 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/291  
25958168 MDExOlB1bGxSZXF1ZXN0MjU5NTgxNjg= 292 closed 0 Allow for pd.TimedeltaIndex and serialize it to netCDF shoyer 1217238 Fixes #55 2014-12-12T08:19:32Z 2014-12-12T09:41:03Z 2014-12-12T09:41:01Z 2014-12-12T09:41:01Z 81bbf9ef2643303d3e595a1d090c4610e7aa3416   0.3.2 836999 0 2eee7df09dd0888569497ac227b969c8ba1faa21 a31e0e5f85336aa9da87dacf93e765007b3a60cb MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/292  
26349640 MDExOlB1bGxSZXF1ZXN0MjYzNDk2NDA= 294 closed 0 Coerce arrays of datetime.datetime objects into datetime64 shoyer 1217238 Fixes #136 Also includes some speedups for Variable construction 2014-12-19T03:39:35Z 2014-12-19T05:27:51Z 2014-12-19T05:27:50Z 2014-12-19T05:27:50Z dbf5fd51845c0510422243fbcfb5a374c3243470   0.3.2 836999 0 3925fda821688b8d824b277b0d82798e83dc40e6 a9f63ffbee4bc929c29d682c3a119db10d11c78e MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/294  
26355014 MDExOlB1bGxSZXF1ZXN0MjYzNTUwMTQ= 295 closed 0 Cleanup & bug fix shoyer 1217238 Fixes #279. 2014-12-19T07:17:35Z 2014-12-19T07:21:33Z 2014-12-19T07:21:31Z 2014-12-19T07:21:31Z 3bdb8b84ea79a23ca73162aa67880e0ed4fd8d27   0.3.2 836999 0 889d80332d34b597070ee32211475266e2e86c9f 0c7e1b168e05052a0bfcabb16588dec6aba6d9bf MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/295  
26410800 MDExOlB1bGxSZXF1ZXN0MjY0MTA4MDA= 296 closed 0 BUG: fix string <-> char conversion for non-contiguous arrays shoyer 1217238   2014-12-20T02:23:57Z 2014-12-20T02:44:03Z 2014-12-20T02:44:01Z 2014-12-20T02:44:01Z b93a1de8621879bca62e4ea86c2634d6db63fc44   0.3.2 836999 0 543fa95e22e89be45c5c712feaa3dd2a5cb7334b ad6d6a1f0c9c2558e0388041a351914ce4f08bd2 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/296  
26443413 MDExOlB1bGxSZXF1ZXN0MjY0NDM0MTM= 297 closed 0 Better decoding of netCDF times shoyer 1217238 This version avoids using the netCDF4 library unless strictly necessary (e.g., for non-standard calendars). 2014-12-22T08:03:02Z 2014-12-22T20:09:43Z 2014-12-22T20:09:41Z 2014-12-22T20:09:41Z 83aa2c13cfe17e0a5b64314aa85ee2cf4e9529f7   0.3.2 836999 0 14466e68f1ccdbaf428833aec04d8067379365a4 5ac8205d4d6475b6244ebd569b7e7beae1ca7b66 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/297  
26443536 MDExOlB1bGxSZXF1ZXN0MjY0NDM1MzY= 298 closed 0 Fix DataArray.__init__ docstring shoyer 1217238 xref: #277 2014-12-22T08:07:10Z 2014-12-22T08:25:15Z 2014-12-22T08:25:15Z 2014-12-22T08:25:15Z 57814c8dd2b192c42350337e9be78e3af1df54b7   0.3.2 836999 0 5797d2eb93dab82891b3e3aae607f7245dd3cfa2 5ac8205d4d6475b6244ebd569b7e7beae1ca7b66 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/298  
26477924 MDExOlB1bGxSZXF1ZXN0MjY0Nzc5MjQ= 299 closed 0 Update docs shoyer 1217238   2014-12-22T20:09:54Z 2014-12-22T21:00:58Z 2014-12-22T21:00:56Z 2014-12-22T21:00:56Z d167c84f0f696a87423acbb7897035f32f0fdcc1   0.3.2 836999 0 20c66b3dbd1481f7e1e09cdd46603cd321c4717b 013bbabfc0b3ac7606d4102efe231996c6c65da8 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/299  
26546974 MDExOlB1bGxSZXF1ZXN0MjY1NDY5NzQ= 301 closed 0 Add attribute style access for variables and attributes shoyer 1217238 Fixes #286 2014-12-24T06:41:22Z 2014-12-24T07:07:25Z 2014-12-24T07:07:24Z 2014-12-24T07:07:24Z 646579f51bf579608a76658f7882fe14ecda7ae8   0.3.2 836999 0 5092b3c51711ede11558f5524522b37972e1f2c3 b1c8cdd46df56f1048c3606ef0f45ae3312ca2dd MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/301  

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [pull_requests] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [state] TEXT,
   [locked] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [body] TEXT,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [merged_at] TEXT,
   [merge_commit_sha] TEXT,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [draft] INTEGER,
   [head] TEXT,
   [base] TEXT,
   [author_association] TEXT,
   [auto_merge] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [url] TEXT,
   [merged_by] INTEGER REFERENCES [users]([id])
);
CREATE INDEX [idx_pull_requests_merged_by]
    ON [pull_requests] ([merged_by]);
CREATE INDEX [idx_pull_requests_repo]
    ON [pull_requests] ([repo]);
CREATE INDEX [idx_pull_requests_milestone]
    ON [pull_requests] ([milestone]);
CREATE INDEX [idx_pull_requests_assignee]
    ON [pull_requests] ([assignee]);
CREATE INDEX [idx_pull_requests_user]
    ON [pull_requests] ([user]);
Powered by Datasette · Queries took 20.645ms · About: xarray-datasette