home / github

Menu
  • Search all tables
  • GraphQL API

pull_requests

Table actions
  • GraphQL API for pull_requests

40 rows where milestone = 1307323

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: user, updated_at, base, author_association, created_at (date), updated_at (date), closed_at (date), merged_at (date)

id ▼ node_id number state locked title user body created_at updated_at closed_at merged_at merge_commit_sha assignee milestone draft head base author_association auto_merge repo url merged_by
43080138 MDExOlB1bGxSZXF1ZXN0NDMwODAxMzg= 547 closed 0 remove facet doc clarkfitzg 5356122   2015-08-21T20:55:35Z 2015-10-21T07:05:47Z 2015-08-21T20:55:43Z 2015-08-21T20:55:43Z 2a597aaf6fd7bf4298f4e557a705f0d1374cb305   0.6.1 1307323 0 d741b85150de887904896b8bdd049f6fd7029941 eaeaa085540f9d98aa09616bf464ef0110a12fd9 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/547  
43195526 MDExOlB1bGxSZXF1ZXN0NDMxOTU1MjY= 549 closed 0 cast DataArray name to string if not None jhamman 2443309 closes #533 2015-08-24T16:44:40Z 2015-10-21T07:05:47Z 2015-08-25T15:46:39Z   bc0e3f00652732f385216cde8b9ff4ce03ab9a3d   0.6.1 1307323 0 dfc2940d01797f69e5d1f5ed82c80b0b0e2402c1 8847ede760cc00c712a25dced49e6dc0158be966 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/549  
43208761 MDExOlB1bGxSZXF1ZXN0NDMyMDg3NjE= 550 closed 0 robust plot documentation clarkfitzg 5356122 These are the plots that will be in the docs. ## default ![image](https://cloud.githubusercontent.com/assets/5356122/9449387/1d1f27e6-4a57-11e5-93cf-47f0fedcb222.png) ## `robust=True` ![image](https://cloud.githubusercontent.com/assets/5356122/9449396/32b87d0a-4a57-11e5-826e-3ee71d539edb.png) 2015-08-24T18:57:14Z 2015-10-21T07:05:47Z 2015-08-26T18:11:04Z 2015-08-26T18:11:04Z b0c8b174d363439dbea7f17fbfac52b087eb00f6   0.6.1 1307323 0 82cc37aa2b920f1bfa96688d28f08006a8af8aa1 8847ede760cc00c712a25dced49e6dc0158be966 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/550  
43302640 MDExOlB1bGxSZXF1ZXN0NDMzMDI2NDA= 551 closed 0 raise error if dataarray.name is wrong type jhamman 2443309 closes #533 xref #549 2015-08-25T15:50:09Z 2015-10-26T20:28:19Z 2015-09-16T23:40:54Z   bd1bd8250f7387018f67ca6648ce338a9db28518   0.6.1 1307323 0 0b315eac39ad8e40cd8a6cebbec780ce8bfc3433 8847ede760cc00c712a25dced49e6dc0158be966 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/551  
43724184 MDExOlB1bGxSZXF1ZXN0NDM3MjQxODQ= 554 closed 0 Fixes for complex numbers shoyer 1217238 Fixes #553 Also ensures we skip NaN when aggregating with complex dtypes. ~~Still needs release notes.~~ 2015-08-31T00:36:57Z 2015-10-21T07:05:47Z 2015-09-01T20:28:51Z 2015-09-01T20:28:50Z b955f5816a54259bd3d67afa17581cae1d3ac2d6   0.6.1 1307323 0 0531c3798002dca8febc9a73fec748a179199665 04f4e88bbae14d8c4c8e5d7b3f866751ead90a6c MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/554  
43724469 MDExOlB1bGxSZXF1ZXN0NDM3MjQ0Njk= 555 closed 0 Use deterministic names for dask arrays from open_dataset shoyer 1217238 This will allow xray users to take advantage of dask's nascent support for caching intermediate results (https://github.com/blaze/dask/pull/502). For example: ``` In [1]: import xray In [2]: from dask.diagnostics.cache import Cache In [3]: c = Cache(5e7) In [4]: c.register() In [5]: ds = xray.open_mfdataset('/Users/shoyer/data/era-interim/2t/2014-*.nc', engine='scipy') In [6]: %time ds.sum().load() CPU times: user 2.72 s, sys: 2.7 s, total: 5.41 s Wall time: 3.85 s Out[6]: <xray.Dataset> Dimensions: () Coordinates: *empty* Data variables: t2m float64 5.338e+10 In [7]: %time ds.mean().load() CPU times: user 5.31 s, sys: 1.86 s, total: 7.17 s Wall time: 1.81 s Out[7]: <xray.Dataset> Dimensions: () Coordinates: *empty* Data variables: t2m float64 279.0 In [8]: %time ds.mean().load() CPU times: user 7.73 ms, sys: 2.73 ms, total: 10.5 ms Wall time: 8.45 ms Out[8]: <xray.Dataset> Dimensions: () Coordinates: *empty* Data variables: t2m float64 279.0 ``` Still needs docs (probably in the dask section) and a what's new item. Also, this will update the minimum required version of dask to 0.7 (which should be called out in docs). 2015-08-31T00:50:23Z 2015-10-21T07:05:47Z 2015-09-14T20:33:16Z 2015-09-14T20:33:16Z d09478227fa908ca8d3461275d5368d8eb1898cd   0.6.1 1307323 0 2ff6ccee78f95dfe8cf74c7820a1a8ea1a84ee5f f26b29a2809c4bb54dae781d995afc831b7c411f MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/555  
43724592 MDExOlB1bGxSZXF1ZXN0NDM3MjQ1OTI= 556 closed 0 Raise an error for non-unique columns in Dataset.from_dataframe shoyer 1217238 Fixes #449 (also needs what's new line item) 2015-08-31T00:55:31Z 2015-10-21T07:05:48Z 2015-09-01T20:40:32Z 2015-09-01T20:40:32Z e9761966bdef2c16d44eb14bc975e454490356a4   0.6.1 1307323 0 88ae779b6f1f342bb485f17d7709b243a6425c1b 663ade6db018a0fae85fcfbce7e3f237e4f103ac MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/556  
44139573 MDExOlB1bGxSZXF1ZXN0NDQxMzk1NzM= 558 closed 0 cartopy example using real data clarkfitzg 5356122 Use the tutorial dataset for the cartopy example. Image becomes: ![image](https://cloud.githubusercontent.com/assets/5356122/9666849/5f6e3f1e-522d-11e5-8146-d79d7b29f23d.png) 2015-09-03T18:18:17Z 2015-10-21T07:05:48Z 2015-09-03T20:16:19Z 2015-09-03T20:16:19Z fe1ce36c54aa40eb961c3266cb47d80a37834bcc   0.6.1 1307323 0 79423a33f916bdd26f46e0b3de71ead930e47e65 276592cb193a7e39a7be9fc4febff8e02d3d7116 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/558  
44149294 MDExOlB1bGxSZXF1ZXN0NDQxNDkyOTQ= 559 closed 0 Fix pcolormesh plots with cartopy shoyer 1217238 ``` python proj = ccrs.Orthographic(central_longitude=230, central_latitude=5) fig, ax = plt.subplots(figsize=(20, 8), subplot_kw=dict(projection=proj)) x.plot.pcolormesh(ax=ax, transform=ccrs.PlateCarree()) ax.coastlines() ``` Before: ![image](https://cloud.githubusercontent.com/assets/1217238/9669158/5149e908-523a-11e5-8d2a-c48326115174.png) After: ![image](https://cloud.githubusercontent.com/assets/1217238/9669163/556316fe-523a-11e5-8322-d7f92e551d65.png) 2015-09-03T19:50:22Z 2015-11-15T21:49:11Z 2015-09-14T20:33:36Z 2015-09-14T20:33:36Z 81e5de33fcc9df8150fb13b4776af0e9c400a014   0.6.1 1307323 0 574e351e625fc6a7e665bca9ae81a06ec90f7986 cb600eef08ecc0fad6373ca5ac49d6884fa57e53 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/559  
44612048 MDExOlB1bGxSZXF1ZXN0NDQ2MTIwNDg= 568 closed 0 Fixed bug with indexing arrays with unicode dtype shoyer 1217238 Previous this raised TypeError: ``` Variable(('x'), [u'tmax'])[0][()] ``` 2015-09-09T23:16:09Z 2015-10-21T07:05:48Z 2015-09-10T06:11:58Z 2015-09-10T06:11:58Z 308d052a6d0910baab1681651884466ef76cec87   0.6.1 1307323 0 ecff09976e38fcc96e3797a61c2fa6558b3d3dc3 f26b29a2809c4bb54dae781d995afc831b7c411f MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/568  
44737380 MDExOlB1bGxSZXF1ZXN0NDQ3MzczODA= 569 closed 0 BUG: ensure xray works with pandas 0.17.0 shoyer 1217238 We were using some internal routines in pandas to convert object of datetime objects arrays to datetime64. Predictably, these internal routines have now changed, breaking xray. This is definitely my fault but also bad luck -- I had a guard against the internal function dissappearing, but not against the keyword arguments changing. In any case, this fix ensures forwards compatibility with the next release of pandas, which will be coming out next week. 2015-09-11T01:12:55Z 2015-10-21T07:05:48Z 2015-09-11T06:23:56Z 2015-09-11T06:23:56Z 6c4f4f14c78ac3d0915d0c35a9bd59dad53d3f66   0.6.1 1307323 0 12f856363920c23336c608c56a9edfbdce14bd5c 3d11031253d9dcc8b4e18f61e92343d41b5dc3fb MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/569  
44738496 MDExOlB1bGxSZXF1ZXN0NDQ3Mzg0OTY= 570 closed 0 Don't quote strings in FacetGrid titles shoyer 1217238 `model = foo` looks better than `model = 'foo'` or `model = u'foo'`. This is also consistent with what Seaborn does. 2015-09-11T01:37:01Z 2015-10-21T07:05:48Z 2015-09-11T21:01:42Z 2015-09-11T21:01:42Z db465008b9649abbf2c387c846cffe250d92e0d1   0.6.1 1307323 0 ad35bd24cb1e55716d42231a5012306e2678e55f de81fd78462cbe14263fe8be2f7d8500c0d0b4fb MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/570  
44825535 MDExOlB1bGxSZXF1ZXN0NDQ4MjU1MzU= 573 closed 0 minor changes in dask docs clarkfitzg 5356122 fix a couple typos 2015-09-11T20:29:17Z 2015-10-21T07:05:48Z 2015-09-11T20:41:48Z 2015-09-11T20:41:48Z 40c930ccb348fa12853c40cfd166a7ca786e3b1e   0.6.1 1307323 0 477f87e01b3a76b6ee63c6347383626fb0d81802 de81fd78462cbe14263fe8be2f7d8500c0d0b4fb MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/573  
44983050 MDExOlB1bGxSZXF1ZXN0NDQ5ODMwNTA= 574 closed 0 Handle global attribute with engine='pydap' more consistently shoyer 1217238 These should be unpacked as actual global attributes, instead of being nested dicts under keys like "GLOBAL". The netcdf4 opendap client already unpacks these attributes. 2015-09-14T21:24:57Z 2015-10-21T07:05:48Z 2015-09-24T17:42:10Z 2015-09-24T17:42:10Z cdcc62e5b8fb1b015e90bc12fdf4c46a1d2c7cee   0.6.1 1307323 0 a0bfeb595d9ebb51177f0e60cdf0616bee332cd8 1136b6a4914a688353b441bc2a0b70c601f2439b MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/574  
45105968 MDExOlB1bGxSZXF1ZXN0NDUxMDU5Njg= 579 closed 0 Fix failing test case on i686 shoyer 1217238 Fixes #578 2015-09-15T21:38:50Z 2015-10-21T07:07:59Z 2015-09-15T21:43:35Z 2015-09-15T21:43:35Z a98ef835a405fc4debc943e18f06929075b856b5   0.6.1 1307323 0 d7ddf08fbc9abc4e192a9313f577bb2ef41d139a 2b6bfea2d7ba59751f96b61af90dce86086d27d3 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/579  
45237492 MDExOlB1bGxSZXF1ZXN0NDUyMzc0OTI= 580 closed 0 Raise an error if DataArray name is not able to be written to netCDF. jhamman 2443309 closes #533 xref #549, #551 2015-09-16T23:42:54Z 2015-10-21T07:07:59Z 2015-09-18T17:35:26Z 2015-09-18T17:35:26Z 82b2821a6099a99cd8cd564bcdc58362c3b76c58   0.6.1 1307323 0 2da0e7d8be49f944ef16d89e561d500cabea7782 c13ee9875b31dceb505b4aead83272fbcbeef27e MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/580  
45327783 MDExOlB1bGxSZXF1ZXN0NDUzMjc3ODM= 581 closed 0 Convenient faceting clarkfitzg 5356122 Allows this syntax: ``` In [52]: t4d.plot(x='lon', y='lat', col='time', row='fourth_dim') Out[52]: <xray.plot.facetgrid.FacetGrid at 0x1184ffcd0> ``` ![image](https://cloud.githubusercontent.com/assets/5356122/9942968/244f727a-5d33-11e5-9d59-3d58a0b7218f.png) 2015-09-17T18:56:49Z 2015-10-21T07:07:59Z 2015-09-21T19:44:42Z 2015-09-21T19:44:42Z 8f2883f0d33bb6c0e1391114346b2bec71d06720   0.6.1 1307323 0 c103dd5378ae1adae53271815cdb6bfe71c4d850 c13ee9875b31dceb505b4aead83272fbcbeef27e MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/581  
45435627 MDExOlB1bGxSZXF1ZXN0NDU0MzU2Mjc= 583 closed 0 Add Python 3.5 to Travis Builds jhamman 2443309   2015-09-18T18:10:06Z 2015-10-21T07:07:59Z 2015-09-19T16:00:53Z 2015-09-19T16:00:53Z 95b359633ba927bca23f0ae7a3bba9a4dc555166   0.6.1 1307323 0 0a11b794b58fde21d8b979f13443c96422186983 a2a3f21e92f9f32c9c4aed3f595856df43faa199 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/583  
45470308 MDExOlB1bGxSZXF1ZXN0NDU0NzAzMDg= 584 closed 0 Make where lazy if either argument is a dask array shoyer 1217238 `where` now uses dask instead of numpy if either the array or `other` is a dask array. Previously, if `other` was a numpy array the method was evaluated eagerly. 2015-09-19T05:15:52Z 2015-10-21T07:08:00Z 2015-09-24T17:38:44Z 2015-09-24T17:38:44Z 6e87dc952676828533820e94bbe87c023d9219e2   0.6.1 1307323 0 42cd7d7569b91a22a74a51159f7d62c758174cae a3c7f592cf94367c3b3ff0bab26215bd81c2c1d8 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/584  
45736878 MDExOlB1bGxSZXF1ZXN0NDU3MzY4Nzg= 586 closed 0 Fix FacetGrid.map and allow specifying size/aspect with .plot shortcut shoyer 1217238 cc @clarkfitzg 2015-09-23T01:43:07Z 2015-10-21T07:08:00Z 2015-09-24T17:27:36Z 2015-09-24T17:27:36Z 61c54e96ef0007681c050d74b5f4f881734c88a1   0.6.1 1307323 0 7f30bf1e0e92206f56f877cdcbe656069366a323 9fbfc627bbaf59444ea2ada482e39d5cfee47d5e MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/586  
45922236 MDExOlB1bGxSZXF1ZXN0NDU5MjIyMzY= 588 closed 0 Fix assignment to the .data attribute of DataArray objects shoyer 1217238   2015-09-24T16:58:56Z 2015-10-21T07:08:00Z 2015-09-24T19:14:32Z 2015-09-24T19:14:32Z 1b8c689603165ed4077b5cc6e25079675b04a5bf   0.6.1 1307323 0 a5980f06dc7a07e6ce1492e159c77f6f2d9269fe c7ef69fd0f64962b71a6e99f519ba7f24461472c MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/588  
45980665 MDExOlB1bGxSZXF1ZXN0NDU5ODA2NjU= 589 closed 0 New encoding keyword argument for to_netcdf shoyer 1217238 Fixes #548 In particular, it would be helpful if someone else could review the new documentation section to see if it makes sense. 2015-09-25T06:24:53Z 2015-10-21T07:08:00Z 2015-10-08T01:08:52Z 2015-10-08T01:08:51Z 898d90ad5e78ce92d39186001c0140e26b0141ec   0.6.1 1307323 0 0d8a19970abf80cac6b03ae0f17f291f85f2c8f1 4c35dcc008a064858a9c8ae11ae4e800a0ac4305 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/589  
46347492 MDExOlB1bGxSZXF1ZXN0NDYzNDc0OTI= 594 closed 0 Spring cleaning jhamman 2443309 This is basically just a style/pep cleanup. I removed a bunch of unused variables from internal modules. I should say that I'm somewhat sheepishly submitting this PR, especially after seeing [this](https://youtu.be/wf-BqAjZb8M?list=PLP1xYYjBXksOm402NpkV1Ah5TRUKiQThn) talk by Raymond Hettinger. However, since my [linter](https://atom.io/packages/linter-flake8) was constantly complaining about many of these, I figured I'd knock off all of them at once. There are quite a few line changes here but none of them should result in different behavior. 2015-09-29T23:59:14Z 2015-10-21T07:08:00Z 2015-09-30T17:36:16Z 2015-09-30T17:36:16Z f8442801c3b1088f0231cdf2fe298e3a5c917625   0.6.1 1307323 0 b71022b12b0f3769c5252b63edce453ed94fb201 d704524a030aef7e2029ec43d19099143b72f653 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/594  
46363372 MDExOlB1bGxSZXF1ZXN0NDYzNjMzNzI= 595 closed 0 unsorted integer indexing on netCDF4 objections on disk jhamman 2443309 add more informative error message when unsorted integer array is used to index netCDF4 variable on disk. Closes #593 2015-09-30T05:43:06Z 2015-10-21T07:08:00Z 2015-10-02T21:41:11Z 2015-10-02T21:41:11Z 462170a1ad08ba5cd52e7a3f6df884f4a28fc6e4   0.6.1 1307323 0 fcddcee53c4f505c08cf4c73df1ebc66592d9fc1 4c35dcc008a064858a9c8ae11ae4e800a0ac4305 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/595  
46467643 MDExOlB1bGxSZXF1ZXN0NDY0Njc2NDM= 596 closed 0 add landscape.yml config file jhamman 2443309 @shoyer - we can ignore any warnings you don't like (e.g. `dangerous-default-value`). xref #594 2015-09-30T22:56:36Z 2015-10-21T07:08:00Z 2015-10-01T18:45:31Z 2015-10-01T18:45:31Z 80bdee536d7b1ef542e70304de544ed82285d13e   0.6.1 1307323 0 2d213e5d822b6d876fea9fa7e8486a056f051175 1ec0e3592be5e9136824144809aa763499134ec7 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/596  
46483378 MDExOlB1bGxSZXF1ZXN0NDY0ODMzNzg= 598 closed 0 Fix colormap for facet grid plots jhamman 2443309 Fixes #592 Added test to check that all subplots in facet grid have same data range and colormap. This fixes two issues present in the existing code: 1) colormap was being selected for each subplot 2) range was being selected for each subplot and colorbar was the result of only the last subplot Some sample code: ``` Python data = (np.random.random(size=(20, 25, 12)) + np.linspace(-3, 3, 12)) # range is ~ -3 to 4 da = xray.DataArray(data, dims=['x', 'y', 'time'], name='data') fg = da.plot.pcolormesh(col='time', col_wrap=4) ``` previously yielded this plot: ![broken](https://cloud.githubusercontent.com/assets/2443309/10212715/f752a92e-67b7-11e5-8477-f5fc877fe716.png) and now yields this plot: ![fixed](https://cloud.githubusercontent.com/assets/2443309/10212716/000fe1f8-67b8-11e5-8265-7ce2a89f8fa4.png) 2015-10-01T04:15:04Z 2015-10-21T07:08:00Z 2015-10-01T17:10:31Z 2015-10-01T17:10:31Z e881473120221e89608c566f55f2aa4b9e013bf3   0.6.1 1307323 0 ca5b1cbd52ddc210bf2a016522213dbdec499c9e 1ec0e3592be5e9136824144809aa763499134ec7 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/598  
46577791 MDExOlB1bGxSZXF1ZXN0NDY1Nzc3OTE= 600 closed 0 BUG: fix open_dataset with remote URIs and chunking shoyer 1217238 This was introduced by #555, but never made it into a release. 2015-10-01T21:14:34Z 2015-10-21T07:08:00Z 2015-10-02T04:48:13Z 2015-10-02T04:48:13Z 7d0c521afe71cf53386c2fa431f6bc28c153143c   0.6.1 1307323 0 8454ee377fb681f05098bdb48f359604f05786ae 9c7bb4dd322e90e901be41f8f02395e666908072 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/600  
46579541 MDExOlB1bGxSZXF1ZXN0NDY1Nzk1NDE= 601 closed 0 Fix broken facet plot in docs shoyer 1217238 Fixes #562 Apparently matplotlib 1.3 (which is all we can use on readthedocs) has a bug when attempting to plot this data using contourf. cc @clarkfitzg 2015-10-01T21:31:00Z 2015-10-21T07:08:00Z 2015-10-02T04:47:50Z 2015-10-02T04:47:49Z 45c8f7415167d15a0fbe0c05f4ff3e9c10fdc7fc   0.6.1 1307323 0 e6750c02910ce2fd3e63f4cd6f62d42be52d7750 9c7bb4dd322e90e901be41f8f02395e666908072 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/601  
46689632 MDExOlB1bGxSZXF1ZXN0NDY2ODk2MzI= 604 closed 0 Add subplot_kws arg to plotting interfaces jhamman 2443309 This argument is only used in the FacetGrid class and allows users to pass arguments to subplot constructor. The api change is a pretty simple and just accepts a single new argument (`subplot_kws`). I think we need to think about how to tweak the subplots a bit more in terms of aspect. Here's some example code that produces the plot below: ``` Python import xray import cartopy.crs as ccrs ds = xray.open_dataset('xray-data/ncep_temperature_north-america_2013-14.nc') ds.lon -= 360 lon0 = ds.lon.values.mean() dss = ds.groupby('time.season').mean('time') g = dss.air.plot.pcolormesh(col='season', col_wrap=2, transform=ccrs.PlateCarree(), subplot_kws=dict(projection=ccrs.PlateCarree(lon0))) for ax in g.axes.flat: ax.coastlines() ax.gridlines() ax.set_extent((-161.25, -28.75, 20, 40)) ``` ![projection1](https://cloud.githubusercontent.com/assets/2443309/10259220/a1f694a4-691a-11e5-805c-2fbbafcab773.png) Obviously there are some issues with the grid lines too but that may end up getting fixed by a more flexible aspect. cc @clarkfitzg closes #603 xref: https://github.com/mwaskom/seaborn/pull/320 2015-10-02T22:36:04Z 2016-11-30T08:00:48Z 2015-10-06T15:10:01Z 2015-10-06T15:10:00Z b5749f006c11827562f6042afc7a83f3b2ccee2a   0.6.1 1307323 0 98946aa7cd7338b0643b738e7c1c713d6d53bc3f 89adda5e719a2bba6231310e3726185597f9beab MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/604  
46709838 MDExOlB1bGxSZXF1ZXN0NDY3MDk4Mzg= 606 closed 0 example of how to use cf convention to use 2d coordinates for plotting jhamman 2443309 This is one idea of how to handle 2d coordinate variables. Attribute names may need to change but this is working for my application. No test written and existing roundtrip tests will likely fail on this first commit. 2015-10-03T17:53:07Z 2015-10-26T20:28:26Z 2015-10-06T15:56:15Z   5fd548404f9005bfd7431aa75ae61f31fd6c636f   0.6.1 1307323 0 c6a61bdc4340099f6b1a2e00dc3d867396e2072e 89adda5e719a2bba6231310e3726185597f9beab MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/606  
46720115 MDExOlB1bGxSZXF1ZXN0NDY3MjAxMTU= 608 closed 0 allow passing coordinate names as x and y to plot methods jhamman 2443309 This allows us to use coordinate names as plotting arguments for `x` and `y`. I have a test for this that isn't quite working yet. 2015-10-04T06:15:36Z 2015-11-15T21:50:18Z 2015-10-09T14:21:25Z 2015-10-09T14:21:25Z b52f8ebea2aff0fce517601b8523db391870c2ac   0.6.1 1307323 0 e25ac4b58dbe91b933bebc06d8d081e3f0c40339 cb4e4138fdb52078d27341dadf0feedb15e1de80 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/608  
46833215 MDExOlB1bGxSZXF1ZXN0NDY4MzMyMTU= 609 closed 0 Doc build fixes and better error handling shoyer 1217238   2015-10-05T21:00:45Z 2015-10-21T07:08:00Z 2015-10-07T05:45:10Z 2015-10-07T05:45:10Z 5efba5cacf7f7706b197ffa66633192c5cdfce3c   0.6.1 1307323 0 f9ece3cb6fcc6925d77ba6381cd3887b8f1418ff 89adda5e719a2bba6231310e3726185597f9beab MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/609  
47104188 MDExOlB1bGxSZXF1ZXN0NDcxMDQxODg= 612 closed 0 keep coordinates encoding even when coordinates are decoded jhamman 2443309 fixes #610 2015-10-08T02:01:20Z 2015-10-26T20:28:26Z 2015-10-08T18:03:19Z 2015-10-08T18:03:19Z c63a72a821d6fc264e05b19d9af8433c4dad397b   0.6.1 1307323 0 e3508a8ee48ac1b1722df9ec1e932abd173502e7 0966b78003e3e25ef9d41f9e7f938bfaefeb7d22 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/612  
47245743 MDExOlB1bGxSZXF1ZXN0NDcyNDU3NDM= 614 closed 0 Weights calculation fails in python 2.x due to integer division scottza 122792 Fix seasonal means example notebook to work on Python 2.x 2015-10-09T08:29:07Z 2015-10-21T07:08:00Z 2015-10-10T07:09:00Z 2015-10-10T07:09:00Z 9b43365eab6937245c099c840561246a0ece0008   0.6.1 1307323 0 c35d5fe5964156cab15a249fd79ef32974f70163 7edd52607a031479f19a5e7426a14aef706c396f CONTRIBUTOR   xarray 13221727 https://github.com/pydata/xarray/pull/614  
47349510 MDExOlB1bGxSZXF1ZXN0NDczNDk1MTA= 618 closed 0 numpy 1.10 compat fixes jhamman 2443309 fixes #617 @shoyer - can you take a look at `test_index_0d_not_a_time` and see if you can figure out why that test is failing? I couldn't sort it out. Also, we're now getting a ton of these warnings: `FutureWarning: numpy equal will not check object identity in the future. The comparison did not return the same result as suggested by the identity (`is`)) and will change.` I thought about trying to suppress the ones that come directly from xray but that seems tricky to do safely. matplotlib and numpy itself are raising the same warnings. err... 2015-10-10T17:04:45Z 2016-01-04T23:11:55Z 2015-10-12T20:37:14Z 2015-10-12T20:37:14Z e45f0f730c879535320fa43635fb81fe9c644cd4   0.6.1 1307323 0 675578f982272fbf3eec99c1d3249f38397e8bdb a2fa27004f6cac476a3dbec2fa0774716f05f198 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/618  
47737477 MDExOlB1bGxSZXF1ZXN0NDc3Mzc0Nzc= 626 closed 0 Update Travis-CI builds to use conda env shoyer 1217238   2015-10-15T02:18:48Z 2015-10-21T07:08:00Z 2015-10-16T00:39:57Z 2015-10-16T00:39:57Z 7b1f6ec072febac1ec7ce2569a5de32c1b7bdc3e   0.6.1 1307323 0 45be2f4bb36e621ea0e28faed60e9410f13f44a5 5abc994798fb773d965adccf0dd8d932357044e0 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/626  
48039548 MDExOlB1bGxSZXF1ZXN0NDgwMzk1NDg= 629 closed 0 ENH: add tolerance argument to .sel and .reindex shoyer 1217238 `.sel` and `.reindex` now support the `tolerance` argument for controlling nearest-neighbor selection: ``` In [5]: array = xray.DataArray([1, 2, 3], dims='x') In [6]: array.reindex(x=[0.9, 1.5], method='nearest', tolerance=0.2) Out[6]: <xray.DataArray (x: 2)> array([ 2., nan]) Coordinates: * x (x) float64 0.9 1.5 ``` This feature requires pandas v0.17 or newer. 2015-10-19T07:44:25Z 2015-10-21T07:08:00Z 2015-10-21T03:47:45Z 2015-10-21T03:47:45Z 4c7034b5bd6e0bd5cbb2027c3b3e84d555a4fa53   0.6.1 1307323 0 d915588c77603fa5da24f94b008140fbc309d4cd a2fff5601f3c54849ae938e926f4fc7fd884de1d MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/629  
48210985 MDExOlB1bGxSZXF1ZXN0NDgyMTA5ODU= 632 closed 0 Fix a couple of minor typos petercable 6645714   2015-10-20T14:48:54Z 2015-10-21T07:08:00Z 2015-10-20T16:58:10Z 2015-10-20T16:58:10Z 462a89f07df1b5e45e609c9a714e68626e3f22ca   0.6.1 1307323 0 ffb987463f471a6e5f51c6739960048102711666 6ea7eb2b388075cc838c5ddf0ddaa47020cfcb89 CONTRIBUTOR   xarray 13221727 https://github.com/pydata/xarray/pull/632  
48235213 MDExOlB1bGxSZXF1ZXN0NDgyMzUyMTM= 633 closed 0 Remove all mutable arguments from functions petercable 6645714 http://docs.python-guide.org/en/latest/writing/gotchas/#mutable-default-arguments Not sure if you want this or not. I didn't see any cases where this was being used intentionally to store state between calls. 2015-10-20T17:55:36Z 2015-10-21T07:08:00Z 2015-10-20T21:35:02Z 2015-10-20T21:35:02Z 9aa802d276c0e27167b938a8261d389040bf1e1e   0.6.1 1307323 0 f42079c95c2ce4388e02fb143b7eb2d47a13f381 5d9545eb8f5b4120379f4669d90394a9e42e9bd5 CONTRIBUTOR   xarray 13221727 https://github.com/pydata/xarray/pull/633  
48296920 MDExOlB1bGxSZXF1ZXN0NDgyOTY5MjA= 635 closed 0 Doc fixes for v0.6.1 shoyer 1217238   2015-10-21T07:36:04Z 2015-10-21T16:51:31Z 2015-10-21T16:51:24Z 2015-10-21T16:51:24Z 210ca15d6ef84b3494208c2f758472a96f4c1a43   0.6.1 1307323 0 ae5733edca83fbe3b82644e6eb570e26d4b40058 c82791133f28e687bf5bb8af4ad64e222d3c0dab MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/635  

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [pull_requests] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [state] TEXT,
   [locked] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [body] TEXT,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [merged_at] TEXT,
   [merge_commit_sha] TEXT,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [draft] INTEGER,
   [head] TEXT,
   [base] TEXT,
   [author_association] TEXT,
   [auto_merge] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [url] TEXT,
   [merged_by] INTEGER REFERENCES [users]([id])
);
CREATE INDEX [idx_pull_requests_merged_by]
    ON [pull_requests] ([merged_by]);
CREATE INDEX [idx_pull_requests_repo]
    ON [pull_requests] ([repo]);
CREATE INDEX [idx_pull_requests_milestone]
    ON [pull_requests] ([milestone]);
CREATE INDEX [idx_pull_requests_assignee]
    ON [pull_requests] ([assignee]);
CREATE INDEX [idx_pull_requests_user]
    ON [pull_requests] ([user]);
Powered by Datasette · Queries took 25.841ms · About: xarray-datasette