pull_requests
5 rows where milestone = 1213895
This data as json, CSV (advanced)
Suggested facets: user, base, author_association, created_at (date), updated_at (date), closed_at (date), merged_at (date)
id ▼ | node_id | number | state | locked | title | user | body | created_at | updated_at | closed_at | merged_at | merge_commit_sha | assignee | milestone | draft | head | base | author_association | auto_merge | repo | url | merged_by |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
40324635 | MDExOlB1bGxSZXF1ZXN0NDAzMjQ2MzU= | 481 | closed | 0 | Add pointwise indexing via isel_points method | jhamman 2443309 | This provides behavior equivalent to numpy slicing with multiple lists. ## Example ``` python >>> da = xray.DataArray(np.arange(56).reshape((7, 8)), dims=['x', 'y']) >>> da <xray.DataArray (x: 7, y: 8)> array([[ 0, 1, 2, 3, 4, 5, 6, 7], [ 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29, 30, 31], [32, 33, 34, 35, 36, 37, 38, 39], [40, 41, 42, 43, 44, 45, 46, 47], [48, 49, 50, 51, 52, 53, 54, 55]]) Coordinates: * x (x) int64 0 1 2 3 4 5 6 * y (y) int64 0 1 2 3 4 5 6 7 >>> da.isel_points(x=[0, 1, 6], y=[0, 1, 0]) <xray.DataArray (points: 3)> array([ 0, 9, 48]) Coordinates: y (points) int64 0 1 0 x (points) int64 0 1 6 * points (points) int64 0 1 2 ``` related: #475 | 2015-07-20T05:41:36Z | 2015-07-27T05:37:19Z | 2015-07-27T05:04:46Z | 2015-07-27T05:04:46Z | ca0d6d6dee86e11170363cc226ec13c553ad5232 | 0.6 1213895 | 0 | 5ab9d4b2f65584aac74e0e54050a84a1a0697773 | 1faf1b2cbf0cbed1d1b62b71df4aec8dbe63bb99 | MEMBER | xarray 13221727 | https://github.com/pydata/xarray/pull/481 | |||
40380369 | MDExOlB1bGxSZXF1ZXN0NDAzODAzNjk= | 483 | closed | 0 | Add plot_pcolormesh | shoyer 1217238 | cc @clarkfitzg | 2015-07-20T18:10:34Z | 2015-07-21T01:24:10Z | 2015-07-21T01:24:08Z | 2015-07-21T01:24:07Z | 59667da1fce8a52f299867c46bdefc3a19c4a37e | 0.6 1213895 | 0 | a05502e09804968795074878fb6d71ac5836ee9d | 1faf1b2cbf0cbed1d1b62b71df4aec8dbe63bb99 | MEMBER | xarray 13221727 | https://github.com/pydata/xarray/pull/483 | |||
41960189 | MDExOlB1bGxSZXF1ZXN0NDE5NjAxODk= | 520 | closed | 0 | added to_masked_array method and masked_array property | jhamman 2443309 | This PR adds convienience methods to convert DataArrays to numpy masked arrays. `DataArray.to_masked_array(copy=True)` returns a numpy Masked array `DataArray.masked_array` returns a masked array that is a view to the `DataArray.values.` closes #460 | 2015-08-08T20:47:41Z | 2015-08-12T18:34:17Z | 2015-08-12T18:34:16Z | 2015-08-12T18:34:16Z | 283940acff0b2d9eece93f3a423d4c0d510ce907 | 0.6 1213895 | 0 | 84ee4d0f61a3b9f7c45589568690fa10a67f87b8 | 200aeb006781528cf6d4ca2f118d7f9257bd191b | MEMBER | xarray 13221727 | https://github.com/pydata/xarray/pull/520 | |||
42315878 | MDExOlB1bGxSZXF1ZXN0NDIzMTU4Nzg= | 529 | closed | 0 | Issue #526 F8 values are incorrectly coerced to F4 when writing NETCD… | petercable 6645714 | …F3-compatible formats | 2015-08-13T05:18:22Z | 2015-08-19T18:29:04Z | 2015-08-19T18:28:59Z | 2015-08-19T18:28:59Z | d991778890c0151bc32e935f839c275547dd6742 | 0.6 1213895 | 0 | 2934036b344a82bdb0d93759a42a5b08eaca8e8a | b2fb18eafe73621a623039ff33eaf6f8cdba7a25 | CONTRIBUTOR | xarray 13221727 | https://github.com/pydata/xarray/pull/529 | |||
42734358 | MDExOlB1bGxSZXF1ZXN0NDI3MzQzNTg= | 539 | closed | 0 | release notes for plotting | clarkfitzg 5356122 | cc @shoyer | 2015-08-18T18:50:11Z | 2015-08-20T00:19:21Z | 2015-08-19T18:26:50Z | 2015-08-19T18:26:50Z | 4d8c4f1a35236bbe312a2885697c17efc6b5a39d | 0.6 1213895 | 0 | 315a1d9ec224d99c5a64264aea28e10142eca787 | 9434b8e4ebb4ba9e29ca5483f9b25ecdb46a4317 | MEMBER | xarray 13221727 | https://github.com/pydata/xarray/pull/539 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [pull_requests] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [state] TEXT, [locked] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [body] TEXT, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [merged_at] TEXT, [merge_commit_sha] TEXT, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [draft] INTEGER, [head] TEXT, [base] TEXT, [author_association] TEXT, [auto_merge] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [url] TEXT, [merged_by] INTEGER REFERENCES [users]([id]) ); CREATE INDEX [idx_pull_requests_merged_by] ON [pull_requests] ([merged_by]); CREATE INDEX [idx_pull_requests_repo] ON [pull_requests] ([repo]); CREATE INDEX [idx_pull_requests_milestone] ON [pull_requests] ([milestone]); CREATE INDEX [idx_pull_requests_assignee] ON [pull_requests] ([assignee]); CREATE INDEX [idx_pull_requests_user] ON [pull_requests] ([user]);