home / github

Menu
  • Search all tables
  • GraphQL API

pull_requests

Table actions
  • GraphQL API for pull_requests

10 rows where milestone = 1004936

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: user, body, base, author_association, created_at (date), updated_at (date), closed_at (date), merged_at (date)

id ▼ node_id number state locked title user body created_at updated_at closed_at merged_at merge_commit_sha assignee milestone draft head base author_association auto_merge repo url merged_by
30427125 MDExOlB1bGxSZXF1ZXN0MzA0MjcxMjU= 359 closed 0 Raise informative exception when _FillValue and missing_value disagree akleeman 514053 Previously conflicting _FillValue and missing_value only raised an AssertionError, now it's more informative. 2015-03-04T00:22:41Z 2015-03-12T16:33:47Z 2015-03-12T16:32:07Z 2015-03-12T16:32:07Z f1dbff3d12aa2f67c70a210651c31a37b60d838b   0.4.1 1004936 0 ec35efd763419f71fcb81a91a70251e55146f0e9 7187bb9af9b2fffedb931dcaa3766b58e769a13e CONTRIBUTOR   xarray 13221727 https://github.com/pydata/xarray/pull/359  
30491293 MDExOlB1bGxSZXF1ZXN0MzA0OTEyOTM= 361 closed 0 Add resample, first and last shoyer 1217238 Fixes #354 `resample` lets you resample a dataset or array along a time axis to a coarser resolution. The syntax is the same as pandas, except you need to supply the time dimension explicitly: ``` In [1]: time = pd.date_range('2000-01-01', freq='6H', periods=10) In [2]: array = xray.DataArray(np.arange(10), [('time', time)]) In [3]: array.resample('1D', dim='time') Out[3]: <xray.DataArray (time: 3)> array([ 1.5, 5.5, 8.5]) Coordinates: * time (time) datetime64[ns] 2000-01-01 2000-01-02 2000-01-03 ``` You can specify how to do the resampling with the how argument and other options such as closed and label let you control labeling: ``` In [4]: array.resample('1D', dim='time', how='sum', label='right') Out[4]: <xray.DataArray (time: 3)> array([ 6, 22, 17]) Coordinates: * time (time) datetime64[ns] 2000-01-02 2000-01-03 2000-01-04 ``` `first` and `last` methods on groupby objects let you take the first or last examples from each group along the grouped axis: ``` In [5]: array.groupby('time.day').first() Out[5]: <xray.DataArray (day: 3)> array([0, 4, 8]) Coordinates: * day (day) int64 1 2 3 ``` 2015-03-04T18:32:24Z 2015-03-05T19:29:42Z 2015-03-05T19:29:39Z 2015-03-05T19:29:39Z eefca5e51afa2af5df3991b7ff4da570408787cd   0.4.1 1004936 0 2358989b61c743a794e007d2324249f95964b5f8 7187bb9af9b2fffedb931dcaa3766b58e769a13e MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/361  
30725562 MDExOlB1bGxSZXF1ZXN0MzA3MjU1NjI= 363 closed 0 Fix (most) windows issues shoyer 1217238 xref #360 In this change: - Fix tests that relied on implicit conversion to int64 (Python's int on windows is int32). - Be more careful about always closing files, even in tests. Not addressed (yet): - Issues with scipy.io.netcdf_file (#341) 2015-03-08T20:10:49Z 2015-03-08T20:15:45Z 2015-03-08T20:15:43Z 2015-03-08T20:15:43Z c851412ab2f1a1499de5a20510ff614532272b55   0.4.1 1004936 0 dc2b0f04bd4c6a80fc059929f88c4d07305a58cb 6512e272dee595ccd7e064f57041d771e5450f8d MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/363  
30742701 MDExOlB1bGxSZXF1ZXN0MzA3NDI3MDE= 365 closed 0 Add "engine" argument and fix reading mmapped data with scipy.io.netcdf shoyer 1217238 Fixes #341 2015-03-09T08:25:18Z 2015-03-09T17:30:28Z 2015-03-09T17:30:28Z 2015-03-09T17:30:28Z b16c32ccc6cd2009b20e5ed2a9a1c608f550d5a7   0.4.1 1004936 0 02dadc9b92b5d6325880165f8192e697a3896e20 5e7b3dfa6080cee9ebd9aaa6f9c59a4a8a190578 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/365  
30807765 MDExOlB1bGxSZXF1ZXN0MzA4MDc3NjU= 366 closed 0 Silenced warnings for all-NaN slices when using nan functions from numpy shoyer 1217238 Fixes #344 These warnings are typically spurious on xray objects. Note that this does result in a _small_ performance penalty for these functions (e.g., a few percent). This can be avoided by install bottleneck. CC @jhammon 2015-03-09T22:48:20Z 2015-03-10T06:49:11Z 2015-03-10T06:49:09Z 2015-03-10T06:49:09Z 5e7e35307d8afb105d08b929dc937679bc17f3c0   0.4.1 1004936 0 67b042363fdc7fc396728db8417c54283d978c12 003b65f056e44a035397022a4bc798dbc7d5a47a MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/366  
31092718 MDExOlB1bGxSZXF1ZXN0MzEwOTI3MTg= 372 closed 0 API: new methods {Dataset/DataArray}.swap_dims shoyer 1217238 Fixes #276 Exmaple usage: ``` In [8]: ds = xray.Dataset({'x': range(3), 'y': ('x', list('abc'))}) In [9]: ds Out[9]: <xray.Dataset> Dimensions: (x: 3) Coordinates: * x (x) int64 0 1 2 Data variables: y (x) |S1 'a' 'b' 'c' In [10]: ds.swap_dims({'x': 'y'}) Out[10]: <xray.Dataset> Dimensions: (y: 3) Coordinates: * y (y) |S1 'a' 'b' 'c' x (y) int64 0 1 2 Data variables: *empty* ``` This is a slightly more verbose API than strictly necessary, because the new dimension names must be along existing dimensions (e.g., we could spell this `ds.set_dims(['y'])`). But I still think it's a good idea, for two reasons: 1. It's more explicit. Users control know which dimensions are being swapped. 2. It opens up the possibility of specifying new dimensions with dictionary like syntax, e.g., `ds.swap_dims('x': ('y', list('abc')))` CC @aykuznetsova 2015-03-13T01:08:15Z 2015-03-17T15:44:30Z 2015-03-17T15:44:30Z 2015-03-17T15:44:30Z 908965075ddb59fc6c67684813fd41c25b1e4259   0.4.1 1004936 0 4be2e38dd94cdf5310e2eb71f77fbfade7bec4df 48ce8c23c31b9a5d092f29974715aa1888b95044 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/372  
31177345 MDExOlB1bGxSZXF1ZXN0MzExNzczNDU= 373 closed 0 New docs on multi-file IO and time-series data shoyer 1217238   2015-03-14T03:12:50Z 2015-03-16T04:02:20Z 2015-03-16T04:02:18Z 2015-03-16T04:02:18Z 768d7f274dd4a493f4a4e56d41aee2c4d0eed95f   0.4.1 1004936 0 2dd06e78d771a899a3d1a630d9edfc13f01dd6ac 3884888a74cfa2f905df3440e64df654a9a9795d MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/373  
31343866 MDExOlB1bGxSZXF1ZXN0MzEzNDM4NjY= 375 closed 0 DOC: Refreshed docs frontpage, including adding logo shoyer 1217238   2015-03-17T15:10:22Z 2015-03-17T15:18:52Z 2015-03-17T15:18:51Z 2015-03-17T15:18:51Z 2a6f8f07a473ca26cba9dadd515d88d4498b7a73   0.4.1 1004936 0 524f6945d189812c46938ce3a5014c082f6c5010 48ce8c23c31b9a5d092f29974715aa1888b95044 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/375  
31352441 MDExOlB1bGxSZXF1ZXN0MzEzNTI0NDE= 376 closed 0 BUG: Fix failing to determine time units shoyer 1217238 Fixed a regression in v0.4 where saving to netCDF could fail with the error `ValueError: could not automatically determine time units`. 2015-03-17T16:32:00Z 2015-03-17T16:40:25Z 2015-03-17T16:40:23Z 2015-03-17T16:40:23Z 6974c4476902ed30c7020a38344cbddc2430bfd6   0.4.1 1004936 0 dee44888624d11be3c3845542879906da82e0e82 bd911aa1d82dcf452cbee97422f568287836a2f9 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/376  
31360448 MDExOlB1bGxSZXF1ZXN0MzEzNjA0NDg= 377 closed 0 Add Appveyor for CI on Windows shoyer 1217238 Fixes #360 Note: several tests for netCDF4 were previously defined twice, by accident. 2015-03-17T17:52:33Z 2015-03-17T18:26:48Z 2015-03-17T18:26:46Z 2015-03-17T18:26:46Z 6ac9060ae113cf776ea59e9d2132595a9dc547f7   0.4.1 1004936 0 a8b5a5d49c67dd3612189130d29bb92cf7d99fd9 4ca0860db17cd00e37d4d2bfe22e2842b3f7ae45 MEMBER   xarray 13221727 https://github.com/pydata/xarray/pull/377  

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [pull_requests] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [state] TEXT,
   [locked] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [body] TEXT,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [merged_at] TEXT,
   [merge_commit_sha] TEXT,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [draft] INTEGER,
   [head] TEXT,
   [base] TEXT,
   [author_association] TEXT,
   [auto_merge] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [url] TEXT,
   [merged_by] INTEGER REFERENCES [users]([id])
);
CREATE INDEX [idx_pull_requests_merged_by]
    ON [pull_requests] ([merged_by]);
CREATE INDEX [idx_pull_requests_repo]
    ON [pull_requests] ([repo]);
CREATE INDEX [idx_pull_requests_milestone]
    ON [pull_requests] ([milestone]);
CREATE INDEX [idx_pull_requests_assignee]
    ON [pull_requests] ([assignee]);
CREATE INDEX [idx_pull_requests_user]
    ON [pull_requests] ([user]);
Powered by Datasette · Queries took 24.06ms · About: xarray-datasette