pull_requests: 52455751
This data as json
id | node_id | number | state | locked | title | user | body | created_at | updated_at | closed_at | merged_at | merge_commit_sha | assignee | milestone | draft | head | base | author_association | auto_merge | repo | url | merged_by |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
52455751 | MDExOlB1bGxSZXF1ZXN0NTI0NTU3NTE= | 668 | closed | 0 | Feature/rolling | 2443309 | This is an initial take at the rolling aggregation object and methods in xray. This PR implements: - A new `Rolling` class available in `DataArray` objects: ``` Python rolling_obj = da.rolling(time=7) ``` - `bottleneck.move_*` functions are wrapped and are available in the following manor: ``` Python rolling_obj.mean() ``` - generic reduce method ``` Python from numpy import nanpercentile rolling_obj.reduce(nanpercentile, q=5) ``` - iterating through the rolling object: ``` Python for label, da_window in rolling_obj: # da_window is a view of da ``` TODO: - [x] Documentation - [x] Cleanup `_setup_windows` - [x] Inject bottleneck methods in some generic way - [x] ~~Possibly create a `Window` object to hold windowed `DataArray`s~~ closes #641 #130 xref pydata/pandas#11603, pydata/pandas#11704 cc @shoyer @bartnijssen | 2015-12-02T21:20:34Z | 2016-02-20T02:37:52Z | 2016-02-20T02:32:33Z | 2016-02-20T02:32:33Z | e28d39c6c2106fb6b5f3e8e84f27e77d42581fb8 | 0 | 68ba033b699d2e4dc36e5fb0659a26233f9d1f64 | 44059471a1af4a3ad9ac665d2038c17c299451c0 | MEMBER | 13221727 | https://github.com/pydata/xarray/pull/668 |
Links from other tables
- 0 rows from pull_requests_id in labels_pull_requests