pull_requests: 1244439811
This data as json
id | node_id | number | state | locked | title | user | body | created_at | updated_at | closed_at | merged_at | merge_commit_sha | assignee | milestone | draft | head | base | author_association | auto_merge | repo | url | merged_by |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1244439811 | PR_kwDOAMm_X85KLKUD | 7540 | open | 0 | added 'storage_transformers' to valid_encodings | 7460993 | This PR adds "storage_transformers" to the valid encodings of a variable, thus allowing Zarr stores to be written using the new sharding storage transformers. Example of usage: ```python import xarray as xr import numpy as np from zarr._storage.v3_storage_transformers import ShardingStorageTransformer from zarr._storage.v3 import DirectoryStoreV3 # Dummy dataset da = xr.DataArray(np.random.randn(1000, 1000), dims=("x", "y")) ds = xr.Dataset(dict(dummy_var=da)) ds = ds.chunk({"x": 100, "y": 100}) # Sharded store and sharding transformer store = DirectoryStoreV3("/home/user/dummy-sharded-store.zarr") transformer = ShardingStorageTransformer("indexed", chunks_per_shard=(5, 1)) # Write sharded store ds.to_zarr( store, encoding={"dummy_var": {"storage_transformers": [transformer]}}, zarr_version=3, ) ``` | 2023-02-16T23:29:44Z | 2023-03-26T20:02:40Z | e212c10d584cd39feb9847fb515ab794d897c0c5 | 0 | 62e180b39fca9de24357f005b9d845aac022fa59 | 830ee6de0d545c997df84fe69b0ac2334bde1d1b | FIRST_TIME_CONTRIBUTOR | 13221727 | https://github.com/pydata/xarray/pull/7540 |
Links from other tables
- 4 rows from pull_requests_id in labels_pull_requests