issues
8 rows where user = 953992 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
124573556 | MDU6SXNzdWUxMjQ1NzM1NTY= | 697 | TST: add test for converting 0-len Series | jreback 953992 | closed | 0 | 7 | 2016-01-02T03:48:48Z | 2019-02-02T07:47:58Z | 2019-02-02T07:47:58Z | MEMBER | are these supported? ``` In [3]: xray.DataArray.from_series(Series([])) ValueError: dimensions () must have the same length as the number of data dimensions, ndim=1 In [5]: xray.Dataset.from_dataframe(DataFrame({'A' : []})) ValueError: dimensions () must have the same length as the number of data dimensions, ndim=1 ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/697/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
124685682 | MDU6SXNzdWUxMjQ2ODU2ODI= | 701 | BUG: not converting datetime64[ns] with tz from pandas.Series | jreback 953992 | closed | 0 | 3 | 2016-01-04T02:04:27Z | 2019-01-22T19:36:41Z | 2019-01-22T19:36:41Z | MEMBER | ``` In [5]: s = Series(pd.date_range('20130101',periods=3,tz='US/Eastern')) In [6]: s Out[6]: 0 2013-01-01 00:00:00-05:00 1 2013-01-02 00:00:00-05:00 2 2013-01-03 00:00:00-05:00 dtype: datetime64[ns, US/Eastern] In [7]: xray.DataArray.from_series(s) Out[7]: <xray.DataArray (index: 3)> array(['2013-01-01T00:00:00.000000000-0500', '2013-01-02T00:00:00.000000000-0500', '2013-01-03T00:00:00.000000000-0500'], dtype='datetime64[ns]') Coordinates: * index (index) int64 0 1 2 In [8]: xray.DataArray.from_series(s).to_pandas() Out[8]: index 0 2013-01-01 05:00:00 1 2013-01-02 05:00:00 2 2013-01-03 05:00:00 dtype: datetime64[ns] ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/701/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
288866396 | MDU6SXNzdWUyODg4NjYzOTY= | 1833 | COMPAT: MultiIndex checking is fragile | jreback 953992 | closed | 0 | 1 | 2018-01-16T11:02:38Z | 2018-02-16T21:02:58Z | 2018-02-16T21:02:58Z | MEMBER | https://github.com/pydata/xarray/blob/master/xarray/core/dataset.py#L2755 checking for a MI via
should be changed to
see here. This is not currently implemented but good to get ahead of this hard to detect usage of the API. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1833/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
288867371 | MDU6SXNzdWUyODg4NjczNzE= | 1834 | DEPR: .asobject | jreback 953992 | closed | 0 | 1 | 2018-01-16T11:06:04Z | 2018-01-16T15:01:27Z | 2018-01-16T15:01:27Z | MEMBER | xarray 0.10.0. instead of -- Docs: http://doc.pytest.org/en/latest/warnings.html ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1834/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
124665607 | MDU6SXNzdWUxMjQ2NjU2MDc= | 700 | BUG: not converting series with CategoricalIndex | jreback 953992 | closed | 0 | 1.0 741199 | 2 | 2016-01-03T19:05:59Z | 2017-02-01T16:56:56Z | 2017-02-01T16:56:56Z | MEMBER | xray 0.6.1 ``` In [1]: s = Series(range(5),index=pd.CategoricalIndex(list('aabbc'),name='foo')) In [4]: xray.DataArray.from_series(s) ValueError: object array method not producing an array ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/700/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | |||||
124664101 | MDU6SXNzdWUxMjQ2NjQxMDE= | 699 | BUG: Dataset.from_dataframe() losing dims? | jreback 953992 | closed | 0 | 4 | 2016-01-03T18:42:52Z | 2016-01-04T02:05:33Z | 2016-01-04T02:05:33Z | MEMBER | ``` In [16]: df = DataFrame({'a': list('abc'), 'b': list(range(1, 4)), 'c': np.arange(3, 6).astype('u1'), 'd': np.arange(4.0, 7.0, dtype='float64'), 'e': [True, False, True], 'f': pd.Categorical(list('abc')), 'g': pd.date_range('20130101', periods=3), 'h': pd.date_range('20130101', periods=3, tz='US/Eastern')} ) In [17]: df.index.name = 'foo' In [18]: df.columns.name = 'bar' In [19]: df
Out[19]:
bar a b c d e f g h
foo In [20]: df.dtypes Out[20]: bar a object b int64 c uint8 d float64 e bool f category g datetime64[ns] h datetime64[ns, US/Eastern] dtype: object ``` ``` In [21]: import xray In [22]: xray.version Out[22]: '0.6.1' In [23]: xray.Data
xray.DataArray xray.Dataset In [24]: xray.Dat In [24]: xray.Dataset.from_dataframe(df) Out[24]: <xray.Dataset> Dimensions: (foo: 3) Coordinates: * foo (foo) int64 0 1 2 Data variables: a (foo) object 'a' 'b' 'c' b (foo) int64 1 2 3 c (foo) uint8 3 4 5 d (foo) float64 4.0 5.0 6.0 e (foo) bool True False True f (foo) category 'a' 'b' 'c' g (foo) datetime64[ns] 2013-01-01 2013-01-02 2013-01-03 h (foo) datetime64[ns] 2013-01-01T05:00:00 2013-01-02T05:00:00 ... ``` so [23] is a bit unsatisfying as it basically gloms together things. But [24] doesn't appear correct as its now 3 dims? what happened to bar? this in the context of |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/699/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
106053954 | MDU6SXNzdWUxMDYwNTM5NTQ= | 571 | pandas v0.17.0rc1 | jreback 953992 | closed | 0 | 1 | 2015-09-11T17:08:08Z | 2015-09-11T17:31:11Z | 2015-09-11T17:31:11Z | MEMBER | we have some fairly significant changes and would like you to test and provide any feedback: https://github.com/pydata/pandas/releases/tag/v0.17.0rc1 thanks! |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/571/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
28262599 | MDU6SXNzdWUyODI2MjU5OQ== | 18 | ENH: NETCDF4 in pandas | jreback 953992 | closed | 0 | 2 | 2014-02-25T16:48:17Z | 2014-04-28T07:02:43Z | 2014-04-28T07:02:43Z | MEMBER | see this related issue: https://github.com/pydata/pandas/issues/5487 this is actually not hard to do, and might allow you to push some of your backends to pandas. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/18/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);