issues
4 rows where user = 9312831 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1206634329 | I_kwDOAMm_X85H68dZ | 6493 | boundary conditions for differentiate() | miniufo 9312831 | open | 0 | 9 | 2022-04-18T04:07:32Z | 2022-04-26T14:48:33Z | NONE | Is your feature request related to a problem?I need to take centered finite difference of Commonly used BCs are:
1. Describe the solution you'd likeThe implementation of padded with BCs into N+2data_pad = pad_BCs(data, type='periodic') it is safe to take finite differencefor i in range(len(data)) diff[i] = data_pad [i+1] - data_pad [i-1] ``` The Then we can call:
Describe alternatives you've consideredNo response Additional contextI am not clear how |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6493/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
607718350 | MDU6SXNzdWU2MDc3MTgzNTA= | 4011 | missing empty group when iterate over groupby_bins | miniufo 9312831 | open | 0 | 4 | 2020-04-27T17:22:31Z | 2022-04-09T03:08:14Z | NONE | When I try to iterate over the object one of these bins will be emptybins = [0,4,5] grouped = array.groupby_bins('dim_0', bins) for i, group in enumerate(grouped): print(str(i)+' '+group) ``` When a bin contains no samples (bin of (4, 5]), the empty group will be dropped. Then how to iterate over the full bins even when some bins contain nothing? I've read this related issue #1019. But my case here need the correct order in grouped and empty groups need to be iterated over. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4011/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1176172498 | I_kwDOAMm_X85GGvfS | 6399 | DataArray.plot.pcolormesh with kwarg shading='gouraud' | miniufo 9312831 | closed | 0 | 4 | 2022-03-22T02:09:36Z | 2022-03-22T10:14:18Z | 2022-03-22T10:14:18Z | NONE | What happened?Given a DataArray TypeError: Dimensions of C (256, 512) are incompatible with X (513) and/or Y (257); see help(pcolormesh) ``` Not sure if this relates to What did you expect to happen?
Minimal Complete Verifiable Example```Python import xarray as xr ds = xr.tutorial.open_dataset('air_temperature') ds.air[0].plot.pcolormesh(shading='gouraud') ``` Relevant log output```Python C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\axes_axes.py in _pcolorargs(self, funcname, shading, args, *kwargs) 5709 else: # ['nearest', 'gouraud']: 5710 if (Nx, Ny) != (ncols, nrows): -> 5711 raise TypeError('Dimensions of C %s are incompatible with' 5712 ' X (%d) and/or Y (%d); see help(%s)' % ( 5713 C.shape, Nx, Ny, funcname)) TypeError: Dimensions of C (25, 53) are incompatible with X (54) and/or Y (26); see help(pcolormesh) ``` Anything else we need to know?No EnvironmentINSTALLED VERSIONScommit: None python: 3.8.11 (default, Aug 6 2021, 09:57:55) [MSC v.1916 64 bit (AMD64)] python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 60 Stepping 3, GenuineIntel byteorder: little LC_ALL: None LANG: None LOCALE: ('Chinese (Simplified)_China', '936') libhdf5: 1.12.1 libnetcdf: 4.8.1 xarray: 0.19.0 pandas: 1.3.1 numpy: 1.20.3 scipy: 1.6.2 netCDF4: 1.5.8 pydap: installed h5netcdf: 0.12.0 h5py: 3.4.0 Nio: None zarr: 2.8.1 cftime: 1.6.0 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: 0.9.9.1 iris: None bottleneck: 1.3.2 dask: 2021.08.0 distributed: 2021.08.0 matplotlib: 3.4.2 cartopy: 0.18.0 seaborn: 0.11.2 numbagg: None pint: None setuptools: 52.0.0.post20210125 pip: 21.0.1 conda: 4.11.0 pytest: 6.2.4 IPython: 7.26.0 sphinx: 4.0.2 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6399/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
588126763 | MDU6SXNzdWU1ODgxMjY3NjM= | 3896 | consecutive time selection | miniufo 9312831 | closed | 0 | 7 | 2020-03-26T03:24:12Z | 2020-03-28T14:39:06Z | 2020-03-28T14:39:06Z | NONE | Not sure if this has been asked. I have a sea surface temperature (SST) |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3896/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);