issues
35 rows where user = 90008 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1933712083 | I_kwDOAMm_X85zQhrT | 8289 | segfault with a particular netcdf4 file | hmaarrfk 90008 | open | 0 | 11 | 2023-10-09T20:07:17Z | 2024-05-03T16:54:18Z | CONTRIBUTOR | What happened?The following code yields a segfault on my machine (and many other machines with a similar environment) ``` import xarray filename = 'tiny.nc.txt' engine = "netcdf4" dataset = xarray.open_dataset(filename, engine=engine) i = 0 for i in range(60): xarray.open_dataset(filename, engine=engine) ``` What did you expect to happen?Not to segfault. Minimal Complete Verifiable Example
```Python import xarray from tqdm import tqdm filename = 'mrc.nc.txt' engine = "h5netcdf" dataset = xarray.open_dataset(filename, engine=engine) for i in tqdm(range(60), desc=f"filename={filename}, enine={engine}"): xarray.open_dataset(filename, engine=engine) engine = "netcdf4" dataset = xarray.open_dataset(filename, engine=engine) for i in tqdm(range(60), desc=f"filename={filename}, enine={engine}"): xarray.open_dataset(filename, engine=engine) filename = 'tiny.nc.txt' engine = "h5netcdf" dataset = xarray.open_dataset(filename, engine=engine) for i in tqdm(range(60), desc=f"filename={filename}, enine={engine}"): xarray.open_dataset(filename, engine=engine) engine = "netcdf4" dataset = xarray.open_dataset(filename, engine=engine) for i in tqdm(range(60), desc=f"filename={filename}, enine={engine}"): xarray.open_dataset(filename, engine=engine) ``` hand crafting the file from start to finish seems to not segfault: ``` import xarray import numpy as np engine = 'netcdf4' dataset = xarray.Dataset() coords = {} coords['image_x'] = np.arange(1, dtype='int') dataset = dataset.assign_coords(coords) dataset['image'] = xarray.DataArray( np.zeros((1,), dtype='uint8'), dims=('image_x',) ) %%dataset.to_netcdf('mrc.nc.txt') %%dataset = xarray.open_dataset('mrc.nc.txt', engine=engine) for i in range(10): xarray.open_dataset('mrc.nc.txt', engine=engine) ``` MVCE confirmation
Relevant log output
Anything else we need to know?At first I thought it was deep in hdf5, but I am less convinced now xref: https://github.com/HDFGroup/hdf5/issues/3649 Environment
```
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.12 | packaged by Ramona Optics | (main, Jun 27 2023, 02:59:09) [GCC 12.3.0]
python-bits: 64
OS: Linux
OS-release: 6.5.1-060501-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.14.2
libnetcdf: 4.9.2
xarray: 2023.9.1.dev25+g46643bb1.d20231009
pandas: 2.1.1
numpy: 1.24.4
scipy: 1.11.3
netCDF4: 1.6.4
pydap: None
h5netcdf: 1.2.0
h5py: 3.9.0
Nio: None
zarr: 2.16.1
cftime: 1.6.2
nc_time_axis: None
PseudoNetCDF: None
iris: None
bottleneck: None
dask: 2023.3.0
distributed: 2023.3.0
matplotlib: 3.8.0
cartopy: None
seaborn: None
numbagg: None
fsspec: 2023.9.2
cupy: None
pint: 0.22
sparse: None
flox: None
numpy_groupies: None
setuptools: 68.2.2
pip: 23.2.1
conda: 23.7.4
pytest: 7.4.2
mypy: None
IPython: 8.16.1
sphinx: 7.2.6
```
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8289/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
2129180716 | PR_kwDOAMm_X85mld8X | 8736 | Make list_chunkmanagers more resilient to broken entrypoints | hmaarrfk 90008 | closed | 0 | 6 | 2024-02-11T21:37:38Z | 2024-03-13T17:54:02Z | 2024-03-13T17:54:02Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/8736 | As I'm a developing my custom chunk manager, I'm often checking out between my development branch and production branch breaking the entrypoint. This made xarray impossible to import unless I re-ran This should help xarray be more resilient in other software's bugs in case they install malformed entrypoints Example: ```python
Thank you for considering.
This is mostly a quality of life thing for developers, I don't see this as a user visible change. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8736/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
2128501296 | I_kwDOAMm_X85-3low | 8733 | A basic default ChunkManager for arrays that report their own chunks | hmaarrfk 90008 | open | 0 | 21 | 2024-02-10T14:36:55Z | 2024-03-10T17:26:13Z | CONTRIBUTOR | Is your feature request related to a problem?I'm creating duckarrays for various file backed datastructures for mine that are naturally "chunked". i.e. different parts of the array may appear in completely different files. Using these "chunks" and the "strides" algorithms can better decide on how to iterate in a convenient manner. For example, an MP4 file's chunks may be defined as being delimited by I frames, while images stored in a TIFF may be delimited by a page. So for me, chunks are not so useful for parallel computing, but more for computing locally and choosing the appropriate way to iterate through a large arrays (TB of uncompressed data). Describe the solution you'd likeI think a default Chunk manager could simply implement Advanced users could then go in an reimplement their own chunkmanager, but I was unable to use my duckarrays that incldued a Something as simple as: ```patch diff --git a/xarray/core/parallelcompat.py b/xarray/core/parallelcompat.py index c009ef48..bf500abb 100644 --- a/xarray/core/parallelcompat.py +++ b/xarray/core/parallelcompat.py @@ -681,3 +681,26 @@ class ChunkManagerEntrypoint(ABC, Generic[T_ChunkedArray]): cubed.store """ raise NotImplementedError() + + +class DefaultChunkManager(ChunkMangerEntrypoint): + def init(self) -> None: + self.array_cls = None + + def is_chunked_array(self, data: Any) -> bool: + return is_duck_array(data) and hasattr(data, "chunks") + + def chunks(self, data: T_ChunkedArray) -> T_NormalizedChunks: + return data.chunks + + def compute(self, data: T_ChunkedArray | Any, kwargs) -> tuple[np.ndarray, ...]: + raise tuple(np.asarray(d) for d in data) + + def normalize_chunks(self, args, kwargs): + raise NotImplementedError() + + def from_array(self, *args, kwargs): + raise NotImplementedError() + + def apply_gufunc(self, args, *kwargs): + raise NotImplementedError() ``` Describe alternatives you've consideredI created my own chunk manager, with my own chunk manager entry point. Kinda tedious... Additional contextIt seems that this is related to: https://github.com/pydata/xarray/pull/7019 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8733/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
2131345470 | PR_kwDOAMm_X85ms1Q6 | 8738 | Don't break users that were already using ChunkManagerEntrypoint | hmaarrfk 90008 | closed | 0 | 1 | 2024-02-13T02:17:55Z | 2024-02-13T15:37:54Z | 2024-02-13T03:21:32Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/8738 | For example, you just broke cubed https://github.com/xarray-contrib/cubed-xarray/blob/main/cubed_xarray/cubedmanager.py#L15 Not sure how much you care, it didn't seem like anybody other than me ever tried this module on github...
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8738/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
2131364916 | PR_kwDOAMm_X85ms5QB | 8739 | Add a test for usability of duck arrays with chunks property | hmaarrfk 90008 | open | 0 | 1 | 2024-02-13T02:46:47Z | 2024-02-13T03:35:24Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/8739 | xref: https://github.com/pydata/xarray/issues/8733
```python
xarray/tests/test_variable.py F
================================================ FAILURES ================================================
____________________________ TestAsCompatibleData.test_duck_array_with_chunks ____________________________
self = <xarray.tests.test_variable.TestAsCompatibleData object at 0x7f3d1b122e60>
def test_duck_array_with_chunks(self):
# Non indexable type
class CustomArray(NDArrayMixin, indexing.ExplicitlyIndexed):
def __init__(self, array):
self.array = array
@property
def chunks(self):
return self.shape
def __array_function__(self, *args, **kwargs):
return NotImplemented
def __array_ufunc__(self, *args, **kwargs):
return NotImplemented
array = CustomArray(np.arange(3))
assert is_chunked_array(array)
var = Variable(dims=("x"), data=array)
> var.load()
/home/mark/git/xarray/xarray/tests/test_variable.py:2745:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/home/mark/git/xarray/xarray/core/variable.py:936: in load
self._data = to_duck_array(self._data, **kwargs)
/home/mark/git/xarray/xarray/namedarray/pycompat.py:129: in to_duck_array
chunkmanager = get_chunked_array_type(data)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
args = (CustomArray(array=array([0, 1, 2])),), chunked_arrays = [CustomArray(array=array([0, 1, 2]))]
chunked_array_types = {<class 'xarray.tests.test_variable.TestAsCompatibleData.test_duck_array_with_chunks.<locals>.CustomArray'>}
chunkmanagers = {'dask': <xarray.namedarray.daskmanager.DaskManager object at 0x7f3d1b1568f0>}
def get_chunked_array_type(*args: Any) -> ChunkManagerEntrypoint[Any]:
"""
Detects which parallel backend should be used for given set of arrays.
Also checks that all arrays are of same chunking type (i.e. not a mix of cubed and dask).
"""
# TODO this list is probably redundant with something inside xarray.apply_ufunc
ALLOWED_NON_CHUNKED_TYPES = {int, float, np.ndarray}
chunked_arrays = [
a
for a in args
if is_chunked_array(a) and type(a) not in ALLOWED_NON_CHUNKED_TYPES
]
# Asserts all arrays are the same type (or numpy etc.)
chunked_array_types = {type(a) for a in chunked_arrays}
if len(chunked_array_types) > 1:
raise TypeError(
f"Mixing chunked array types is not supported, but received multiple types: {chunked_array_types}"
)
elif len(chunked_array_types) == 0:
raise TypeError("Expected a chunked array but none were found")
# iterate over defined chunk managers, seeing if each recognises this array type
chunked_arr = chunked_arrays[0]
chunkmanagers = list_chunkmanagers()
selected = [
chunkmanager
for chunkmanager in chunkmanagers.values()
if chunkmanager.is_chunked_array(chunked_arr)
]
if not selected:
> raise TypeError(
f"Could not find a Chunk Manager which recognises type {type(chunked_arr)}"
E TypeError: Could not find a Chunk Manager which recognises type <class 'xarray.tests.test_variable.TestAsCompatibleData.test_duck_array_with_chunks.<locals>.CustomArray'>
/home/mark/git/xarray/xarray/namedarray/parallelcompat.py:158: TypeError
============================================ warnings summary ============================================
xarray/testing/assertions.py:9
/home/mark/git/xarray/xarray/testing/assertions.py:9: DeprecationWarning:
Pyarrow will become a required dependency of pandas in the next major release of pandas (pandas 3.0),
(to allow more performant data types, such as the Arrow string type, and better interoperability with other libraries)
but was not found to be installed on your system.
If this would cause problems for you,
please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466
import pandas as pd
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
======================================== short test summary info =========================================
FAILED xarray/tests/test_variable.py::TestAsCompatibleData::test_duck_array_with_chunks - TypeError: Could not find a Chunk Manager which recognises type <class 'xarray.tests.test_variable.Te...
====================================== 1 failed, 1 warning in 0.77s ======================================
(dev) ✘-1 ~/git/xarray [add_test_for_duck_array|✔]
```
</details>
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8739/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||||
2034395026 | PR_kwDOAMm_X85hnUnc | 8534 | Point users to where in their code they should make mods for Dataset.dims | hmaarrfk 90008 | closed | 0 | 8 | 2023-12-10T14:31:29Z | 2023-12-10T18:50:10Z | 2023-12-10T18:23:42Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/8534 | Its somewhat annoying to get warnings that point to a line within a library where the warning is issued. It really makes it unclear what one needs to change. This points to the user's access of the
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8534/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1429172192 | I_kwDOAMm_X85VL2_g | 7239 | include/exclude lists in Dataset.expand_dims | hmaarrfk 90008 | closed | 0 | 6 | 2022-10-31T03:01:52Z | 2023-11-05T06:29:06Z | 2023-11-05T06:29:06Z | CONTRIBUTOR | Is your feature request related to a problem?I would like to be able to expand the dimensions of a dataset, but most of the time, I only want to expand the datasets of a few key variables. It would be nice if there were some kind of filter mechanism. Describe the solution you'd like```python import xarray as xr dataset = xr.Dataset(data_vars={'foo': 1, 'bar': 2}) dataset.expand_dims("zar", include_variables=["foo"]) Only foo is expanded, bar is left alone.``` Describe alternatives you've consideredWriting my own function. I'll probably do this. Subclassing. Too confusing and easy to "diverge" from you all when you do decide to implment this. Additional contextFor large datasets, you likely just want some key parameters expanded, and not all parameters expanded. xarray version: 2022.10.0 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7239/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1152047670 | I_kwDOAMm_X85Eqto2 | 6309 | Read/Write performance optimizations for netcdf files | hmaarrfk 90008 | open | 0 | 5 | 2022-02-26T17:40:40Z | 2023-09-13T08:27:47Z | CONTRIBUTOR | What happened?I'm not too sure this is a bug report, but I figured I would share some of the investigation I've done on the topic of writing large datasets to netcdf. For clarity, the usecase I'm considering is writing large in-memory array to persistant storage on Linux.
The symptoms are two fold: 1. The write speed is slow. About 1GB/s, much less than the 2-3 GB/s you can get with other means. 2. The Linux disk cache just keeps filling up. Its quite hard to get good performance from systems, so I"m going to put a few more constraints on the type of data we are are writing:
1. The underlying numpy array must be alight to the linux Page boundary of 4096 bytes.
2. The underlying numpy array must have been pre-faulted and not swapped. (Do not use I feel like these two options are rather easy to get to as I'll show in my example. What did you expect to happen?I want to be able to write at 3.2GB/s with my shiny new SSD. I want to leave my RAM unused when I'm archiving to disk. Minimal Complete Verifiable Example```Python import numpy as np import xarray as xr def empty_aligned(shape, dtype=np.float64, align=4096): if not isinstance(shape, tuple): shape = (shape,)
dataset = xr.DataArray( empty_aligned((4, 1024, 1024, 1024), dtype='uint8'), name='mydata').to_dataset() Fault and write data to this datasetdataset['mydata'].data[...] = 1 %time dataset.to_netcdf("test", engine='h5netcdf') %time dataset.to_netcdf("test", engine='netcdf4') ``` Relevant log outputBoth output about 3.5s equivalent to just about 1GB/s. To get to about 3 ish GB/s (taking about 1.27s to write a 4GB array). One needs to do a few things:
For the h5netcdf backend you would have to add the following kwargs to h5netcdf constructor
Anything else we need to know?The main challenge is that while writing aligned data this way is REALLY fast, writing small chunks and unaligned data becomes REALLY slow. Personally, I think that someone might be able to write a new HDF5 driver that does better optimization, I feel like this can help people loading large datasets which seems to be a large part of the community of xarray users. Environment``` INSTALLED VERSIONS commit: None python: 3.9.9 (main, Dec 29 2021, 07:47:36) [GCC 9.4.0] python-bits: 64 OS: Linux OS-release: 5.13.0-30-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.12.1 libnetcdf: 4.8.1 xarray: 0.21.1 pandas: 1.4.0 numpy: 1.22.2 scipy: 1.8.0 netCDF4: 1.5.8 pydap: None h5netcdf: 0.13.1 h5py: 3.6.0.post1 Nio: None zarr: None cftime: 1.5.2 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: 2022.01.1 distributed: None matplotlib: 3.5.1 cartopy: None seaborn: None numbagg: None fsspec: 2022.01.0 cupy: None pint: None sparse: None setuptools: 60.8.1 pip: 22.0.3 conda: None pytest: None IPython: 8.0.1 sphinx: None ``` h5py includes some additions of mine that allow you to use the DIRECT driver and I am using a version of HDF5 that is built with the DIRECT driver. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6309/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 1 } |
xarray 13221727 | issue | ||||||||
1773296009 | I_kwDOAMm_X85pslmJ | 7940 | decide on how to handle `empty_like` | hmaarrfk 90008 | open | 0 | 8 | 2023-06-25T13:48:46Z | 2023-07-05T16:36:35Z | CONTRIBUTOR | Is your feature request related to a problem?calling ```python from xarray.tests import InaccessibleArray import xarray as xr import numpy as np array = InaccessibleArray(np.zeros((3, 3), dtype="uint8")) da = xr.DataArray(array, dims=["x", "y"]) np.empty_like(da) ```
Describe the solution you'd likeI'm not too sure. This is why I raised this as a "feature" and not a bug. On one hand, it is pretty hard to "get" the underlying class. Is it a:
I think that there are also some nuances between:
Describe alternatives you've consideredfor now, i'm trying to avoid In general, we haven't seen much benefit from dask and cuda still needs careful memory management. Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7940/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1731320789 | PR_kwDOAMm_X85Rougi | 7883 | Avoid one call to len when getting ndim of Variables | hmaarrfk 90008 | closed | 0 | 3 | 2023-05-29T23:37:10Z | 2023-07-03T15:44:32Z | 2023-07-03T15:44:31Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/7883 | I admit this is a super micro optimization but it avoids in certain cases the creation of a tuple, and a call to len on it. I hit this as I was trying to understand why Variable indexing was so much slower than numpy indexing. It seems that bounds checking in python is just slower than in C. Feel free to close this one if you don't want this kind of optimization.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7883/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1428549868 | I_kwDOAMm_X85VJfDs | 7237 | The new NON_NANOSECOND_WARNING is not very nice to end users | hmaarrfk 90008 | closed | 0 | 5 | 2022-10-30T01:56:59Z | 2023-05-09T12:52:54Z | 2022-11-04T20:13:20Z | CONTRIBUTOR | What is your issue?The new nanosecond warning doesn't really point anybody to where they should change their code. Nor does it really tell them how to fix it.
I think at the very least, the stacklevel should be specified when calling the It isn't really pretty, but I've been passing a parameter when I expect to pass up a warning to the end user: eg. https://github.com/vispy/vispy/pull/2405 However, others have not liked that approach. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7237/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1306457778 | I_kwDOAMm_X85N3vay | 6791 | get_data or get_varibale method | hmaarrfk 90008 | closed | 0 | 3 | 2022-07-15T20:24:31Z | 2023-04-29T03:40:01Z | 2023-04-29T03:40:01Z | CONTRIBUTOR | Is your feature request related to a problem?I often store a few scalars or arrays in xarray containers. However, when I want to optionally address their data the code I have to run ```python import xarray as xr dataset = xr.Dataset() my_variable = dataset.get('my_variable', None) if my_variable is not None: my_variable = my_variable.data else: my_variable = np.asarray(1.0) # the default value I actually want ``` Describe the solution you'd like```python import xarray as xr dataset = xr.Dataset() my_variable = dataset.get_data('my_variable', np.asarray(1.0)) ``` Describe alternatives you've consideredNo response Additional contextThank you! |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6791/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1675299031 | I_kwDOAMm_X85j2wjX | 7770 | Provide a public API for adding new backends | hmaarrfk 90008 | closed | 0 | 3 | 2023-04-19T17:06:24Z | 2023-04-20T00:15:23Z | 2023-04-20T00:15:23Z | CONTRIBUTOR | Is your feature request related to a problem?I understand that this is a double edge sword. but we were relying on https://github.com/pydata/xarray/pull/7523 Describe the solution you'd likeSome agreed upon way that we could create a new backend. This would allow users to provide more custom parameters to file creation attributes and other options that are currently not exposed via xarray. I've used this to overwrite some parameters like netcdf global variables. I've also used this to add I did it through a custom backend because it felt like a contentious feature at the time. (I really do think it helps performance). Describe alternatives you've consideredA deprecation cycle in the future??? Maybe this could have been acheived with the definition of Additional contextWe used this to define the alignment within a file. netcdf4 exposed this as a global variable so we have to somewhat hack around it just before creation time. I mean, you can probably say: "Doing this is too complicated, we don't want to give any guarantees on this front." I would agree with you..... |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7770/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
690546795 | MDExOlB1bGxSZXF1ZXN0NDc3NDIwMTkz | 4400 | [WIP] Support nano second time encoding. | hmaarrfk 90008 | closed | 0 | 10 | 2020-09-02T00:16:04Z | 2023-03-26T20:59:00Z | 2023-03-26T20:08:50Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/4400 | Not too sure i have the bandwidth to complete this seeing as cftime and datetime don't have nanoseconds, but maybe it can help somebody.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4400/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1475567394 | PR_kwDOAMm_X85ESe3u | 7356 | Avoid loading entire dataset by getting the nbytes in an array | hmaarrfk 90008 | closed | 0 | 14 | 2022-12-05T03:29:53Z | 2023-03-17T17:31:22Z | 2022-12-12T16:46:40Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/7356 | Using Sad.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7356/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
689502005 | MDExOlB1bGxSZXF1ZXN0NDc2NTM3Mzk3 | 4395 | WIP: Ensure that zarr.ZipStores are closed | hmaarrfk 90008 | closed | 0 | 4 | 2020-08-31T20:57:49Z | 2023-01-31T21:39:15Z | 2023-01-31T21:38:23Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/4395 | ZipStores aren't always closed making it hard to use them as fluidly as regular zarr stores.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4395/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1432388736 | I_kwDOAMm_X85VYISA | 7245 | coordinates not removed for variable encoding during reset_coords | hmaarrfk 90008 | open | 0 | 5 | 2022-11-02T02:46:56Z | 2023-01-15T16:23:15Z | CONTRIBUTOR | What happened?When calling This means, that at save time they will be resaved as coordinates... annoying. (and erroneous) What did you expect to happen?No response Minimal Complete Verifiable Example```Python import xarray as xr dataset = xr.Dataset( data_vars={'images': (('y', 'x'), np.zeros((10, 2)))}, coords={'zar': 1} ) dataset.to_netcdf('foo.nc', mode='w') %%foo_loaded = xr.open_dataset('foo.nc') foo_loaded_reset = foo_loaded.reset_coords() %%assert 'zar' in foo_loaded.coords assert 'zar' not in foo_loaded_reset.coords assert 'zar' in foo_loaded_reset.data_vars foo_loaded_reset.to_netcdf('bar.nc', mode='w') %% Now load the datasetbar_loaded = xr.open_dataset('bar.nc') assert 'zar' not in bar_loaded.coords, 'zar is erroneously a coordinate' %%This is the problemassert 'zar' not in foo_loaded_reset.images.encoding['coordinates'].split(' '), "zar should not be in here" ``` MVCE confirmation
Relevant log outputNo response Anything else we need to know?
Environment
```
INSTALLED VERSIONS
------------------
commit: None
python: 3.9.13 | packaged by Ramona Optics | (main, Aug 31 2022, 22:30:30)
[GCC 10.4.0]
python-bits: 64
OS: Linux
OS-release: 5.15.0-50-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.8.1
xarray: 2022.10.0
pandas: 1.5.1
numpy: 1.23.4
scipy: 1.9.3
netCDF4: 1.6.1
pydap: None
h5netcdf: 1.0.2
h5py: 3.7.0
Nio: None
zarr: 2.13.3
cftime: 1.6.2
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: None
dask: 2022.10.0
distributed: 2022.10.0
matplotlib: 3.6.1
cartopy: None
seaborn: None
numbagg: None
fsspec: 2022.10.0
cupy: None
pint: 0.20.1
sparse: None
flox: None
numpy_groupies: None
setuptools: 65.5.0
pip: 22.3
conda: 22.9.0
pytest: 7.2.0
IPython: 7.33.0
sphinx: 5.3.0
/home/mark/mambaforge/envs/mcam_dev/lib/python3.9/site-packages/_distutils_hack/__init__.py:33: UserWarning: Setuptools is replacing distutils.
warnings.warn("Setuptools is replacing distutils.")
```
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7245/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1524642393 | I_kwDOAMm_X85a4DJZ | 7428 | Avoid instantiating the data in prepare_variable | hmaarrfk 90008 | open | 0 | 0 | 2023-01-08T19:18:49Z | 2023-01-09T06:25:52Z | CONTRIBUTOR | Is your feature request related to a problem?I'm trying to extend the features of xarray for a new backend I'm developing internally. The main use case that we are trying to open a multi 100's of GB dataset, slice out a smaller dataset (10s of GB) and write it. However, when we try to use functions like Describe the solution you'd likeWould it be possible to just remove the second return value from Describe alternatives you've consideredI'm proably going to create a new method, with a not so well chosen name like Additional contextI think this would be useful, in general for other users that need more out of memory computation. I've found that you really have to "buy into" dask, all the way to the end, if you want to see any benefits. As such, if somebody used a dask array, this would create a serial choke point in: |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7428/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1468595351 | PR_kwDOAMm_X85D6oci | 7334 | Remove code used to support h5py<2.10.0 | hmaarrfk 90008 | closed | 0 | 1 | 2022-11-29T19:34:24Z | 2022-11-30T23:30:41Z | 2022-11-30T23:30:41Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/7334 | It seems that the relevant issue was fixed in 2.10.0 https://github.com/h5py/h5py/commit/466181b178c1b8a5bfa6fb8f217319e021f647e0 I'm not sure how far back you want to fix things. I'm hoping to test this on the CI. I found this since I've been auditing slowdowns in our codebase, which has caused me to review much of the reading pipeline. Do you want to add a test for h5py>=2.10.0? Or can we assume that users won't install things together. https://pypi.org/project/h5py/2.10.0/ I could for example set the backend to not be available if a version of h5py that is too old is detected. One could alternatively, just keep the code here.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7334/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1428274982 | PR_kwDOAMm_X85BzXXR | 7236 | Expand benchmarks for dataset insertion and creation | hmaarrfk 90008 | closed | 0 | 8 | 2022-10-29T13:55:19Z | 2022-10-31T15:04:13Z | 2022-10-31T15:03:58Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/7236 | Taken from discussions in https://github.com/pydata/xarray/issues/7224#issuecomment-1292216344 Thank you @Illviljan
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7236/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1423948375 | I_kwDOAMm_X85U37pX | 7224 | Insertion speed of new dataset elements | hmaarrfk 90008 | open | 0 | 3 | 2022-10-26T12:34:51Z | 2022-10-29T22:39:39Z | CONTRIBUTOR | What is your issue?In https://github.com/pydata/xarray/pull/7221 I showed that a major contributor the slowdown in inserting a new element was the cost associated with an internal only debugging assert statement. The benchmarks results 7221 and 7222 are pretty useful to look at. Thank you for encouraging the creation of a "benchmark" so that we can monitor the performance of element insertion. Unfortunately, that was the only "free" lunch I got. A few other minor improvements can be obtained with: https://github.com/pydata/xarray/pull/7222 However, it seems to me that the fundamental reason this is "slow" is because element insertion is not so much "insertion" as it is: * Dataset Merge * Dataset Replacement of the internal methods. This is really solidified in the https://github.com/pydata/xarray/blob/main/xarray/core/dataset.py#L4918 In my benchmarks, I found that in the limit of large datasets, list comprehensions of 1000 elements or more were often used to "search" for variables that were "indexed" https://github.com/pydata/xarray/blob/ca57e5cd984e626487636628b1d34dca85cc2e7c/xarray/core/merge.py#L267 I think a few speedsups can be obtained by avoiding these kinds of "searches" and list comprehensions. However, I think that the dataset would have to provide this kind of information to the Ultimately, I think you trade off "memory footprint" (due to the potential increase of datastructures you keep around) of a dataset, and "speed". Anyway, I just wanted to share where I got. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7224/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1428264468 | PR_kwDOAMm_X85BzVOE | 7235 | Fix type in benchmarks/merge.py | hmaarrfk 90008 | closed | 0 | 0 | 2022-10-29T13:28:12Z | 2022-10-29T15:52:45Z | 2022-10-29T15:52:45Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/7235 | I don't think this affects what is displayed that is determined by param_names
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7235/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1423321834 | PR_kwDOAMm_X85Bi5BN | 7222 | Actually make the fast code path return early for Aligner.align | hmaarrfk 90008 | closed | 0 | 6 | 2022-10-26T01:59:09Z | 2022-10-28T16:22:36Z | 2022-10-28T16:22:35Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/7222 | In relation to my other PR. Without this PR
With the early return
Removing the frivolous copy (does not pass tests)Code for benchmark```python from tqdm import tqdm import xarray as xr from time import perf_counter import numpy as np N = 1000 # Everybody is lazy loading now, so lets force modules to get instantiated dummy_dataset = xr.Dataset() dummy_dataset['a'] = 1 dummy_dataset['b'] = 1 del dummy_dataset time_elapsed = np.zeros(N) dataset = xr.Dataset() # tqdm = iter for i in tqdm(range(N)): time_start = perf_counter() dataset[f"var{i}"] = i time_end = perf_counter() time_elapsed[i] = time_end - time_start # %% from matplotlib import pyplot as plt plt.plot(np.arange(N), time_elapsed * 1E3, label='Time to add one variable') plt.xlabel("Number of existing variables") plt.ylabel("Time to add a variables (ms)") plt.ylim([0, 10]) plt.grid(True) ```xref: https://github.com/pydata/xarray/pull/7221
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7222/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1423312198 | PR_kwDOAMm_X85Bi3Dp | 7221 | Remove debugging slow assert statement | hmaarrfk 90008 | closed | 0 | 13 | 2022-10-26T01:43:08Z | 2022-10-28T02:49:44Z | 2022-10-28T02:49:44Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/7221 | We've been trying to understand why our code is slow. One part is that we use xarray.Datasets almost like dictionaries for our data. The following code is quite common for us
However, through benchmarks, it became obvious that the With this merge request:
```python from tqdm import tqdm import xarray as xr from time import perf_counter import numpy as np N = 1000 Everybody is lazy loading now, so lets force modules to get instantiateddummy_dataset = xr.Dataset() dummy_dataset['a'] = 1 dummy_dataset['b'] = 1 del dummy_dataset time_elapsed = np.zeros(N) dataset = xr.Dataset() for i in tqdm(range(N)): time_start = perf_counter() dataset[f"var{i}"] = i time_end = perf_counter() time_elapsed[i] = time_end - time_start %%from matplotlib import pyplot as plt plt.plot(np.arange(N), time_elapsed * 1E3, label='Time to add one variable') plt.xlabel("Number of existing variables") plt.ylabel("Time to add a variables (ms)") plt.ylim([0, 50]) plt.grid(True) ```
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7221/reactions", "total_count": 2, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 2, "eyes": 0 } |
xarray 13221727 | pull | |||||
1423916687 | PR_kwDOAMm_X85Bk2By | 7223 | Dataset insertion benchmark | hmaarrfk 90008 | closed | 0 | 2 | 2022-10-26T12:09:14Z | 2022-10-27T15:38:09Z | 2022-10-27T15:38:09Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/7223 | xref: https://github.com/pydata/xarray/pull/7221
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7223/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1410575877 | PR_kwDOAMm_X85A4LHp | 7172 | Lazy import dask.distributed to reduce import time of xarray | hmaarrfk 90008 | closed | 0 | 9 | 2022-10-16T18:25:31Z | 2022-10-18T17:41:50Z | 2022-10-18T17:06:34Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/7172 | I was auditing the import time of my software and found that distributed added a non insignificant amount of time to the import of xarray: Using To audit, one can use the the command
Proposed:
One would be tempted to think that this is due to xarray.testing and xarray.tutorial but those just move the imports one level down in tuna graphs.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7172/reactions", "total_count": 3, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 3, "eyes": 0 } |
xarray 13221727 | pull | |||||
1098915891 | I_kwDOAMm_X85BgCAz | 6153 | [FEATURE]: to_netcdf and additional keyword arguments | hmaarrfk 90008 | open | 0 | 2 | 2022-01-11T09:39:35Z | 2022-01-20T06:54:25Z | CONTRIBUTOR | Is your feature request related to a problem?I briefly tried to see if any issue was brought up but couldn't. I'm hoping to be able to pass additional keyword arguments to the engine when using However, it doesn't seem to easy to do so. Similar to how Describe the solution you'd like```python import xarray as xr import numpy as np dataset = xr.DataArray( data=np.zeros(3), name="hello" ).to_dataset() dataset.to_netcdf("my_file.nc", engine="h5netcdf", engine_kwargs={"decode_vlen_strings=True"}) ``` Describe alternatives you've consideredOne could forward the additional keyword arguments with Additional contexth5netcdf emits a warning that is hard to disable without passing a keyword argument to the constructor. https://github.com/h5netcdf/h5netcdf/issues/132 Also, for performance reasons, it might be very good to tune things like the storage data alignment. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6153/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1098924491 | PR_kwDOAMm_X84wyU7M | 6154 | Use base ImportError not MoudleNotFoundError when testing for plugins | hmaarrfk 90008 | closed | 0 | 4 | 2022-01-11T09:48:36Z | 2022-01-11T10:28:51Z | 2022-01-11T10:24:57Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/6154 | Admittedly i had a pretty broken environment (I manually uninstalled C dependencies for python packages installed with conda), but I still expected xarray to "work" with a different backend. I hope the comments in the code explain why Thank you for considering.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6154/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
347962055 | MDU6SXNzdWUzNDc5NjIwNTU= | 2347 | Serialization of just coordinates | hmaarrfk 90008 | closed | 0 | 6 | 2018-08-06T15:03:29Z | 2022-01-09T04:28:49Z | 2022-01-09T04:28:49Z | CONTRIBUTOR | In the search for the perfect data storage mechanism, I find myself needing to store some of the images I am generating the metadata seperately. It is really useful for me to serialize just the coordinates of my DataArray. My serialization method of choice is json since it allows me to read the metadata with just a text editor. For that, having the coordinates as a self contained dictionary is really important. Currently, I convert just the coordinates to a dataset, and serialize that. The code looks something like this: ```python import xarray as xr import numpy as np Setup an array with coordinatesn = np.zeros(3) coords={'x': np.arange(3)} m = xr.DataArray(n, dims=['x'], coords=coords) coords_dataset_dict = m.coords.to_dataset().to_dict() coords_dict = coords_dataset_dict['coords'] Read/Write dictionary to JSON fileThis works, but I'm essentially creating an emtpy dataset for itcoords_set = xr.Dataset.from_dict(coords_dataset_dict)
coords2 = coords_set.coords # so many Would encapsulating this functionality in the It would add 2 functions that would look like: ```python def to_dict(self): # offload the heavy lifting to the Dataset class return self.to_dataset().to_dict()['coords'] def from_dict(self, d): # Offload the heavy lifting again to the Dataset class d_dataset = {'dims': [], 'attrs': [], 'coords': d} return Dataset.from_dict(d_dataset).coords ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2347/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
689390592 | MDU6SXNzdWU2ODkzOTA1OTI= | 4394 | Is it possible to append_dim to netcdf stores | hmaarrfk 90008 | closed | 0 | 2 | 2020-08-31T18:02:46Z | 2020-08-31T22:11:10Z | 2020-08-31T22:11:09Z | CONTRIBUTOR | Is your feature request related to a problem? Please describe. Feature request: It seems that it should be possible to append to netcdf4 stores along the unlimited dimensions. Is there an example of this? Describe the solution you'd like I would like the following code to be valid: ```python from xarray.tests.test_dataset import create_append_test_data ds, ds_to_append, ds_with_new_var = create_append_test_data() filename = 'test_dataset.nc' Choose any one ofengine : {'netcdf4', 'scipy', 'h5netcdf'}engine = 'netcdf4' ds.to_netcdf(filename, mode='w', unlimited_dims=['time'], engine=engine) ds_to_append.to_netcdf(filename, mode='a', unlimited_dims=['time'], engine=engine) ``` Describe alternatives you've considered I guess you could use zarr, but the fact that it creates multiple files is a problem. Additional context xarray version: 0.16.0 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4394/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
587398134 | MDExOlB1bGxSZXF1ZXN0MzkzMzQ5NzIx | 3888 | [WIP] [DEMO] Add tests for ZipStore for zarr | hmaarrfk 90008 | closed | 0 | 6 | 2020-03-25T02:29:20Z | 2020-03-26T04:23:05Z | 2020-03-25T21:57:09Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/3888 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3888/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
573577844 | MDU6SXNzdWU1NzM1Nzc4NDQ= | 3815 | Opening from zarr.ZipStore fails to read (store???) unicode characters | hmaarrfk 90008 | open | 0 | 20 | 2020-03-01T16:49:25Z | 2020-03-26T04:22:29Z | CONTRIBUTOR | See upstream: https://github.com/zarr-developers/zarr-python/issues/551 It seems that using a ZipStore creates 1 byte objects for Unicode string attributes. For example, saving the same Dataset with a DirectoryStore and a Zip Store creates an attribute for a unicode array with 20 bytes in size in the first, and 1 byte in size in the second. In fact, ubuntu file roller isn't even allowing me to extract the files. I have a feeling it is due to the note in the zarr documentation
https://zarr.readthedocs.io/en/stable/api/storage.html#zarr.storage.ZipStore MCVE Code SampleZipStore
Issued error```python --------------------------------------------------------------------------- BadZipFile Traceback (most recent call last) <ipython-input-1-2a92a6db56ab> in <module> 7 x.to_zarr(store) 8 with zarr.ZipStore('test_store.zip', mode='r') as store: ----> 9 x_read = xr.open_zarr(store).compute() ~/miniconda3/envs/dev/lib/python3.7/site-packages/xarray/core/dataset.py in compute(self, **kwargs) 803 """ 804 new = self.copy(deep=False) --> 805 return new.load(**kwargs) 806 807 def _persist_inplace(self, **kwargs) -> "Dataset": ~/miniconda3/envs/dev/lib/python3.7/site-packages/xarray/core/dataset.py in load(self, **kwargs) 655 for k, v in self.variables.items(): 656 if k not in lazy_data: --> 657 v.load() 658 659 return self ~/miniconda3/envs/dev/lib/python3.7/site-packages/xarray/core/variable.py in load(self, **kwargs) 370 self._data = as_compatible_data(self._data.compute(**kwargs)) 371 elif not hasattr(self._data, "__array_function__"): --> 372 self._data = np.asarray(self._data) 373 return self 374 ~/miniconda3/envs/dev/lib/python3.7/site-packages/numpy/core/_asarray.py in asarray(a, dtype, order) 83 84 """ ---> 85 return array(a, dtype, copy=False, order=order) 86 87 ~/miniconda3/envs/dev/lib/python3.7/site-packages/xarray/core/indexing.py in __array__(self, dtype) 545 def __array__(self, dtype=None): 546 array = as_indexable(self.array) --> 547 return np.asarray(array[self.key], dtype=None) 548 549 def transpose(self, order): ~/miniconda3/envs/dev/lib/python3.7/site-packages/xarray/backends/zarr.py in __getitem__(self, key) 46 array = self.get_array() 47 if isinstance(key, indexing.BasicIndexer): ---> 48 return array[key.tuple] 49 elif isinstance(key, indexing.VectorizedIndexer): 50 return array.vindex[ ~/miniconda3/envs/dev/lib/python3.7/site-packages/zarr/core.py in __getitem__(self, selection) 570 571 fields, selection = pop_fields(selection) --> 572 return self.get_basic_selection(selection, fields=fields) 573 574 def get_basic_selection(self, selection=Ellipsis, out=None, fields=None): ~/miniconda3/envs/dev/lib/python3.7/site-packages/zarr/core.py in get_basic_selection(self, selection, out, fields) 693 if self._shape == (): 694 return self._get_basic_selection_zd(selection=selection, out=out, --> 695 fields=fields) 696 else: 697 return self._get_basic_selection_nd(selection=selection, out=out, ~/miniconda3/envs/dev/lib/python3.7/site-packages/zarr/core.py in _get_basic_selection_zd(self, selection, out, fields) 709 # obtain encoded data for chunk 710 ckey = self._chunk_key((0,)) --> 711 cdata = self.chunk_store[ckey] 712 713 except KeyError: ~/miniconda3/envs/dev/lib/python3.7/site-packages/zarr/storage.py in __getitem__(self, key) 1249 with self.mutex: 1250 with self.zf.open(key) as f: # will raise KeyError -> 1251 return f.read() 1252 1253 def __setitem__(self, key, value): ~/miniconda3/envs/dev/lib/python3.7/zipfile.py in read(self, n) 914 self._offset = 0 915 while not self._eof: --> 916 buf += self._read1(self.MAX_N) 917 return buf 918 ~/miniconda3/envs/dev/lib/python3.7/zipfile.py in _read1(self, n) 1018 if self._left <= 0: 1019 self._eof = True -> 1020 self._update_crc(data) 1021 return data 1022 ~/miniconda3/envs/dev/lib/python3.7/zipfile.py in _update_crc(self, newdata) 946 # Check the CRC if we're at the end of the file 947 if self._eof and self._running_crc != self._expected_crc: --> 948 raise BadZipFile("Bad CRC-32 for file %r" % self.name) 949 950 def read1(self, n): BadZipFile: Bad CRC-32 for file 'hello/0' 0 2 Untitled10.ipynb ```Working Directory Store example
Expected OutputThe string metadata should work. Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3815/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
335608017 | MDU6SXNzdWUzMzU2MDgwMTc= | 2251 | netcdf roundtrip fails to preserve the shape of numpy arrays in attributes | hmaarrfk 90008 | closed | 0 | 5 | 2018-06-25T23:52:07Z | 2018-08-29T16:06:29Z | 2018-08-29T16:06:28Z | CONTRIBUTOR | Code Sample```python import numpy as np import xarray as xr a = xr.DataArray(np.zeros((3, 3)), dims=('y', 'x')) a.attrs['my_array'] = np.arange(6, dtype='uint8').reshape(2, 3) a.to_netcdf('a.nc') b = xr.open_dataarray('a.nc') b.load() assert np.all(b == a) print('all arrays equal') assert b.dtype == a.dtype print('dtypes equal') print(a.my_array.shape) print(b.my_array.shape) assert a.my_array.shape == b.my_array.shape ``` Problem descriptionI have some metadata that is in the form of numpy arrays. I would think that it should round trip with netcdf. Expected Outputequal shapes inside the metadata Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2251/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
347712372 | MDExOlB1bGxSZXF1ZXN0MjA2MjQ3MjE4 | 2344 | FutureWarning: creation of DataArrays w/ coords Dataset | hmaarrfk 90008 | closed | 0 | 7 | 2018-08-05T16:34:59Z | 2018-08-06T16:02:09Z | 2018-08-06T16:02:09Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/2344 | Previously, this would raise a: FutureWarning: iteration over an xarray.Dataset will change in xarray v0.11 to only include data variables, not coordinates. Iterate over the Dataset.variables property instead to preserve existing behavior in a forwards compatible manner.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2344/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
347558405 | MDU6SXNzdWUzNDc1NTg0MDU= | 2340 | expand_dims erases named dim in the array's coordinates | hmaarrfk 90008 | closed | 0 | 5 | 2018-08-03T23:00:07Z | 2018-08-05T01:15:49Z | 2018-08-04T03:39:49Z | CONTRIBUTOR | Code Sample, a copy-pastable example if possible```python %%import xarray as xa import numpy as np n = np.zeros((3, 2)) data = xa.DataArray(n, dims=['y', 'x'], coords={'y':range(3), 'x':range(2)}) data = data.assign_coords(z=xa.DataArray(np.arange(6).reshape((3, 2)), dims=['y', 'x'])) print('Original Data') print('=============') print(data) %%my_slice = data[0, 1] print("Sliced data") print("===========") print("z coordinate remembers it's own x value") print(f'x = {my_slice.z.x}') %%expanded_slice = data[0, 1].expand_dims('x') print("expanded slice") print("==============") print("forgot that 'z' had 'x' coordinates") print("but remembered it had a 'y' coordinate") print(f"z = {expanded_slice.z}") print(expanded_slice.z.x) ``` Output:
Problem descriptionThe coordinate used to have an explicit dimension. When we expanded the dimension, that information should not be erased. Note that information about other coordinates are maintained. The challengeThe coordinates probably have fewer dimensions than the original data. I'm not sure about xarray's model, but a few challenges come to mind: 1. is the relative order of dimensions maintained between data in the same dataset/dataarray? 2. Can coordinates have MORE dimensions than the array itself? The answer to these two questions might make or break If not, then this becomes a very difficult problem to solve since we don't know where to insert this new dimension in the coordinate array. Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2340/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);