issues
6 rows where user = 8881170 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1317320059 | PR_kwDOAMm_X848ELIu | 6825 | Add docstring example for xr.open_mfdataset | bradyrx 8881170 | closed | 0 | 3 | 2022-07-25T20:17:31Z | 2022-07-25T21:28:25Z | 2022-07-25T21:28:25Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/6825 | This adds a short docstring example to It wasn't very clear before how to do this, and this hopefully will show an easy and minimal pathway to doing so. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6825/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
811321550 | MDU6SXNzdWU4MTEzMjE1NTA= | 4922 | Bottleneck and dask objects ignore `min_periods` on `rolling` | bradyrx 8881170 | open | 0 | 5 | 2021-02-18T17:43:50Z | 2021-12-19T15:18:45Z | CONTRIBUTOR | What happened: When What you expected to happen: When using
Minimal Complete Verifiable Example: With
Without ```python import xarray as xr ds = xr.DataArray([1], dims='time') ds.rolling(time=2, center=True, min_periods=1).mean()
Anything else we need to know?: In an applied case, this came up while working on Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.8.6 | packaged by conda-forge | (default, Jan 25 2021, 23:22:12) [Clang 11.0.1 ] python-bits: 64 OS: Darwin OS-release: 19.6.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: en_US.UTF-8 LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.7.4 xarray: 0.16.2 pandas: 1.2.1 numpy: 1.19.5 scipy: 1.6.0 netCDF4: 1.5.5.1 pydap: None h5netcdf: 0.8.1 h5py: 3.1.0 Nio: None zarr: 2.6.1 cftime: 1.3.1 nc_time_axis: 1.2.0 PseudoNetCDF: None rasterio: 1.1.8 cfgrib: None iris: None bottleneck: 1.3.2 dask: 2021.01.1 distributed: 2021.01.1 matplotlib: 3.3.3 cartopy: 0.18.0 seaborn: 0.11.1 numbagg: None pint: 0.16.1 setuptools: 49.6.0.post20210108 pip: 21.0 conda: None pytest: 6.2.2 IPython: 7.18.1 sphinx: 3.4.3 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4922/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
546451185 | MDExOlB1bGxSZXF1ZXN0MzYwMTI2MDk4 | 3667 | Add map_blocks example to docs | bradyrx 8881170 | closed | 0 | 6 | 2020-01-07T18:57:57Z | 2020-01-15T00:24:03Z | 2020-01-08T17:50:04Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/3667 | This PR adds an example to the It is modeled off of @rabernat's example here: https://nbviewer.jupyter.org/gist/rabernat/30e7b747f0e3583b5b776e4093266114 and was encouraged to be opened via the gitter. It might be slightly large for an example, but I think it shows an applied case to use this in and clears up some common pitfalls (e.g. how to pass args/kwargs). |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3667/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
548174850 | MDExOlB1bGxSZXF1ZXN0MzYxNTI4NjA4 | 3682 | Add map_blocks example to whats-new | bradyrx 8881170 | closed | 0 | 1 | 2020-01-10T16:32:16Z | 2020-01-10T16:48:36Z | 2020-01-10T16:48:32Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/3682 | This simply adds the |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3682/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
477442608 | MDExOlB1bGxSZXF1ZXN0MzA0NzY3MTE5 | 3188 | Add climpred to related projects | bradyrx 8881170 | closed | 0 | 1 | 2019-08-06T15:16:44Z | 2019-08-06T16:04:30Z | 2019-08-06T16:02:20Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/3188 | This adds |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3188/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
445175953 | MDU6SXNzdWU0NDUxNzU5NTM= | 2969 | `where` function mis-broadcasts and alters data type on dataset | bradyrx 8881170 | closed | 0 | 2 | 2019-05-16T21:52:58Z | 2019-05-20T16:30:02Z | 2019-05-20T16:30:02Z | CONTRIBUTOR | Code Sample, a copy-pastable example if possible```python import numpy as np generate datadateVar = np.arange('2005-02', '2005-06', dtype='datetime64[D]') t = len(dateVar) floatVar = np.random.rand(t, 100) indexVar = np.arange(100) intVar = np.random.randint(1, high=10, size=(t, 100)) create datasetA = xr.DataArray(floatVar, dims=['time', 'N']) A.name = 'floatVar' B = xr.DataArray(indexVar, dims=['N']) B.name = 'indexVar' C = xr.DataArray(intVar, dims=['time', 'N']) C.name = 'intVar' D = xr.DataArray(dateVar, dims=['time']) D.name = 'dateVar' ds = xr.merge([A,B,C,D]) print(ds) <xarray.Dataset> Dimensions: (N: 100, time: 120) Dimensions without coordinates: N, time Data variables: floatVar (time, N) float64 0.4223 0.5019 0.8522 ... 0.9338 0.5833 0.09859 indexVar (N) int64 0 1 2 3 4 5 6 7 8 9 10 ... 90 91 92 93 94 95 96 97 98 99 intVar (time, N) int64 9 2 3 6 8 4 8 7 6 4 2 6 ... 3 1 8 3 8 3 5 3 1 6 7 dateVar (time) datetime64[ns] 2005-02-01 2005-02-02 ... 2005-05-31 apply where functionds.where(ds.indexVar > 50, drop=True) <xarray.Dataset> Dimensions: (N: 49, time: 120) Dimensions without coordinates: N, time Data variables: floatVar (time, N) float64 0.3381 0.04735 0.464 ... 0.5571 0.5297 0.8106 indexVar (N) float64 51.0 52.0 53.0 54.0 55.0 ... 95.0 96.0 97.0 98.0 99.0 intVar (time, N) float64 5.0 2.0 9.0 5.0 5.0 1.0 ... 1.0 6.0 5.0 4.0 3.0 dateVar (time, N) datetime64[ns] 2005-02-01 2005-02-01 ... 2005-05-31 ``` Problem descriptionThis is motivated by a use-case of dimensions (Time, nParticle) for a Lagrangian particle simulation. In the above code snippet, I filter by some condition on For variables that contain the same dimension as the one in Further, data-types are changed ( So the two major issues here:
1. Expected Output
Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2969/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);