issues
8 rows where user = 8453445 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, updated_at, closed_at, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1290704150 | I_kwDOAMm_X85M7pUW | 6743 | to_zarr(mode='w') does not overwrite correctly/successfully when changing chunk size | chiaral 8453445 | closed | 0 | 1 | 2022-06-30T22:36:36Z | 2023-11-24T22:14:40Z | 2023-11-24T22:14:40Z | CONTRIBUTOR | What happened?Reproducible example: ``` import xarray as xr import numpy as np Create datasetdata_vars = {'temperature':(['lat','lon','time'], np.random.rand(400,800,1000), {'units': 'Celsius'})} define coordinatescoords = {'time': (['time'], np.arange(1,1001)), 'lat': (['lat'], np.arange(1,401)), 'lon': (['lon'], np.arange(1,801)),} create datasetds = xr.Dataset(data_vars=data_vars, coords=coords, ) ds = ds.chunk({"lat": 20, "lon": 80, "time":100})
ds.to_zarr('temperature',mode='w', consolidated=True)
If I load the data, Then if I re-generate the dataset as above, change the chunk size, and overwrite the file, it works:
However if I do:
when i then re-open the file, the chunk size is still (20,80,100). Ok then maybe it's the encoding, in fact, even if I change the chunk size using I then tried to:
1) set enconding to empty: when I try either one of the two fixing of ValueError: destination buffer too small; expected at least 6400000, got 1280000 ``` I searched for the error above in the open issues and didn't find anything. What did you expect to happen?I expected to be able to overwrite the file with whatever new combination of chunk size I want, especially after fixing the encoding. Minimal Complete Verifiable ExampleNo response MVCE confirmation
Relevant log output```PythonValueError Traceback (most recent call last) Input In [46], in <cell line: 7>() 5 ds.temperature.encoding = {} 6 ds = ds.chunk({"lat": 100, "lon": 80, "time":100}) ----> 7 ds.to_zarr('temperature',mode='w', consolidated=True) File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/xarray/core/dataset.py:2036, in Dataset.to_zarr(self, store, chunk_store, mode, synchronizer, group, encoding, compute, consolidated, append_dim, region, safe_chunks, storage_options) 2033 if encoding is None: 2034 encoding = {} -> 2036 return to_zarr( 2037 self, 2038 store=store, 2039 chunk_store=chunk_store, 2040 storage_options=storage_options, 2041 mode=mode, 2042 synchronizer=synchronizer, 2043 group=group, 2044 encoding=encoding, 2045 compute=compute, 2046 consolidated=consolidated, 2047 append_dim=append_dim, 2048 region=region, 2049 safe_chunks=safe_chunks, 2050 ) File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/xarray/backends/api.py:1432, in to_zarr(dataset, store, chunk_store, mode, synchronizer, group, encoding, compute, consolidated, append_dim, region, safe_chunks, storage_options) 1430 # TODO: figure out how to properly handle unlimited_dims 1431 dump_to_store(dataset, zstore, writer, encoding=encoding) -> 1432 writes = writer.sync(compute=compute) 1434 if compute: 1435 _finalize_store(writes, zstore) File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/xarray/backends/common.py:166, in ArrayWriter.sync(self, compute) 160 import dask.array as da 162 # TODO: consider wrapping targets with dask.delayed, if this makes 163 # for any discernible difference in perforance, e.g., 164 # targets = [dask.delayed(t) for t in self.targets] --> 166 delayed_store = da.store( 167 self.sources, 168 self.targets, 169 lock=self.lock, 170 compute=compute, 171 flush=True, 172 regions=self.regions, 173 ) 174 self.sources = [] 175 self.targets = [] File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/dask/array/core.py:1223, in store(failed resolving arguments) 1221 elif compute: 1222 store_dsk = HighLevelGraph(layers, dependencies) -> 1223 compute_as_if_collection(Array, store_dsk, map_keys, **kwargs) 1224 return None 1226 else: File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/dask/base.py:344, in compute_as_if_collection(cls, dsk, keys, scheduler, get, kwargs) 341 # see https://github.com/dask/dask/issues/8991. 342 # This merge should be removed once the underlying issue is fixed. 343 dsk2 = HighLevelGraph.merge(dsk2) --> 344 return schedule(dsk2, keys, kwargs) File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/dask/threaded.py:81, in get(dsk, result, cache, num_workers, pool, kwargs) 78 elif isinstance(pool, multiprocessing.pool.Pool): 79 pool = MultiprocessingPoolExecutor(pool) ---> 81 results = get_async( 82 pool.submit, 83 pool._max_workers, 84 dsk, 85 result, 86 cache=cache, 87 get_id=_thread_get_id, 88 pack_exception=pack_exception, 89 kwargs, 90 ) 92 # Cleanup pools associated to dead threads 93 with pools_lock: File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/dask/local.py:508, in get_async(submit, num_workers, dsk, result, cache, get_id, rerun_exceptions_locally, pack_exception, raise_exception, callbacks, dumps, loads, chunksize, **kwargs) 506 _execute_task(task, data) # Re-execute locally 507 else: --> 508 raise_exception(exc, tb) 509 res, worker_id = loads(res_info) 510 state["cache"][key] = res File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/dask/local.py:316, in reraise(exc, tb) 314 if exc.traceback is not tb: 315 raise exc.with_traceback(tb) --> 316 raise exc File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/dask/local.py:221, in execute_task(key, task_info, dumps, loads, get_id, pack_exception) 219 try: 220 task, data = loads(task_info) --> 221 result = _execute_task(task, data) 222 id = get_id() 223 result = dumps((result, id)) File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/dask/core.py:119, in _execute_task(arg, cache, dsk) 115 func, args = arg[0], arg[1:] 116 # Note: Don't assign the subtask results to a variable. numpy detects 117 # temporaries by their reference count and can execute certain 118 # operations in-place. --> 119 return func(*(_execute_task(a, cache) for a in args)) 120 elif not ishashable(arg): 121 return arg File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/dask/array/core.py:122, in getter(a, b, asarray, lock)
117 # Below we special-case File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/xarray/core/indexing.py:358, in ImplicitToExplicitIndexingAdapter.array(self, dtype) 357 def array(self, dtype=None): --> 358 return np.asarray(self.array, dtype=dtype) File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/xarray/core/indexing.py:522, in CopyOnWriteArray.array(self, dtype) 521 def array(self, dtype=None): --> 522 return np.asarray(self.array, dtype=dtype) File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/xarray/core/indexing.py:423, in LazilyIndexedArray.array(self, dtype) 421 def array(self, dtype=None): 422 array = as_indexable(self.array) --> 423 return np.asarray(array[self.key], dtype=None) File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/xarray/backends/zarr.py:73, in ZarrArrayWrapper.getitem(self, key) 71 array = self.get_array() 72 if isinstance(key, indexing.BasicIndexer): ---> 73 return array[key.tuple] 74 elif isinstance(key, indexing.VectorizedIndexer): 75 return array.vindex[ 76 indexing._arrayize_vectorized_indexer(key, self.shape).tuple 77 ] File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/zarr/core.py:788, in Array.getitem(self, selection) 786 result = self.vindex[selection] 787 else: --> 788 result = self.get_basic_selection(pure_selection, fields=fields) 789 return result File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/zarr/core.py:914, in Array.get_basic_selection(self, selection, out, fields) 911 return self._get_basic_selection_zd(selection=selection, out=out, 912 fields=fields) 913 else: --> 914 return self._get_basic_selection_nd(selection=selection, out=out, 915 fields=fields) File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/zarr/core.py:957, in Array._get_basic_selection_nd(self, selection, out, fields) 951 def _get_basic_selection_nd(self, selection, out=None, fields=None): 952 # implementation of basic selection for array with at least one dimension 953 954 # setup indexer 955 indexer = BasicIndexer(selection, self) --> 957 return self._get_selection(indexer=indexer, out=out, fields=fields) File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/zarr/core.py:1247, in Array._get_selection(self, indexer, out, fields) 1241 if not hasattr(self.chunk_store, "getitems") or \ 1242 any(map(lambda x: x == 0, self.shape)): 1243 # sequentially get one key at a time from storage 1244 for chunk_coords, chunk_selection, out_selection in indexer: 1245 1246 # load chunk selection into output array -> 1247 self._chunk_getitem(chunk_coords, chunk_selection, out, out_selection, 1248 drop_axes=indexer.drop_axes, fields=fields) 1249 else: 1250 # allow storage to get multiple items at once 1251 lchunk_coords, lchunk_selection, lout_selection = zip(*indexer) File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/zarr/core.py:1951, in Array._chunk_getitem(self, chunk_coords, chunk_selection, out, out_selection, drop_axes, fields) 1948 out[out_selection] = fill_value 1950 else: -> 1951 self._process_chunk(out, cdata, chunk_selection, drop_axes, 1952 out_is_ndarray, fields, out_selection) File /opt/miniconda3/envs/june2022/lib/python3.10/site-packages/zarr/core.py:1859, in Array._process_chunk(self, out, cdata, chunk_selection, drop_axes, out_is_ndarray, fields, out_selection, partial_read_decode) 1857 if isinstance(cdata, PartialReadBuffer): 1858 cdata = cdata.read_full() -> 1859 self._compressor.decode(cdata, dest) 1860 else: 1861 chunk = ensure_ndarray(cdata).view(self._dtype) File numcodecs/blosc.pyx:562, in numcodecs.blosc.Blosc.decode() File numcodecs/blosc.pyx:371, in numcodecs.blosc.decompress() ValueError: destination buffer too small; expected at least 6400000, got 1280000 ``` Anything else we need to know?No response Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.5 | packaged by conda-forge | (main, Jun 14 2022, 07:07:06) [Clang 13.0.1 ]
python-bits: 64
OS: Darwin
OS-release: 21.5.0
machine: arm64
processor: arm
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.12.1
libnetcdf: 4.8.1
xarray: 2022.3.0
pandas: 1.4.3
numpy: 1.22.4
scipy: 1.8.1
netCDF4: 1.5.8
pydap: None
h5netcdf: 1.0.0
h5py: 3.6.0
Nio: None
zarr: 2.12.0
cftime: 1.6.0
nc_time_axis: 1.4.1
PseudoNetCDF: None
rasterio: 1.2.10
cfgrib: 0.9.10.1
iris: None
bottleneck: 1.3.4
dask: 2022.6.0
distributed: 2022.6.0
matplotlib: 3.5.2
cartopy: 0.20.2
seaborn: 0.11.2
numbagg: None
fsspec: 2022.5.0
cupy: None
pint: 0.19.2
sparse: 0.13.0
setuptools: 62.6.0
pip: 22.1.2
conda: None
pytest: None
IPython: 8.4.0
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6743/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1030768250 | I_kwDOAMm_X849cEZ6 | 5877 | Rolling() gives values different from pd.rolling() | chiaral 8453445 | open | 0 | 4 | 2021-10-19T21:41:42Z | 2022-04-09T01:29:07Z | CONTRIBUTOR | I am not sure this is a bug - but it clearly doesn't give the results the user would expect. The rolling sum of zeros gives me values that are not zeros ```python var = np.array([0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.31 , 0.91999996, 8.3 , 1.42 , 0.03 , 1.22 , 0.09999999, 0.14 , 0.13 , 0. , 0.12 , 0.03 , 2.53 , 0. , 0.19999999, 0.19999999, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], dtype='float32') timet = np.array([ 43200000000000, 129600000000000, 216000000000000, 302400000000000, 388800000000000, 475200000000000, 561600000000000, 648000000000000, 734400000000000, 820800000000000, 907200000000000, 993600000000000, 1080000000000000, 1166400000000000, 1252800000000000, 1339200000000000, 1425600000000000, 1512000000000000, 1598400000000000, 1684800000000000, 1771200000000000, 1857600000000000, 1944000000000000, 2030400000000000, 2116800000000000, 2203200000000000, 2289600000000000, 2376000000000000, 2462400000000000, 2548800000000000, 2635200000000000, 2721600000000000, 2808000000000000, 2894400000000000, 2980800000000000], dtype='timedelta64[ns]') ds_ex = xr.Dataset(data_vars=dict( pr=(["time"], var), ), coords=dict( time=("time", timet) ), ) ds_ex.rolling(time=3).sum().pr.values ``` it gives me this result: array([ nan, nan, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 3.1000000e-01, 1.2300000e+00, 9.5300007e+00, 1.0640000e+01, 9.7500000e+00, 2.6700001e+00, 1.3500001e+00, 1.4600002e+00, 3.7000012e-01, 2.7000013e-01, 2.5000012e-01, 1.5000013e-01, 2.6800001e+00, 2.5600002e+00, 2.7300003e+00, 4.0000033e-01, 4.0000033e-01, 2.0000035e-01, 3.5762787e-07, 3.5762787e-07, 3.5762787e-07, 3.5762787e-07, 3.5762787e-07, 3.5762787e-07, 3.5762787e-07, 3.5762787e-07, 3.5762787e-07, 3.5762787e-07], dtype=float32) Note the non zero values - the non zero value changes depending on whether i use float64 or float32 as precision of my data. So this seems to be a precision related issue (although the first values are correctly set to zero), in fact other sums of values are not exactly what they should be. The small difference at the 8th/9th decimal position can be expected due to precision, but the fact that the 0s become non zeros is problematic imho, especially if not documented. Oftentimes zero in geoscience data can mean a very specific thing (i.e. zero rainfall will be characterized differently than non-zero). in pandas this instead works:
array([[ nan, nan, 0. , 0. , 0. , 0. , 0. , 0.31 , 1.22999996, 9.53000015, 10.6400001 , 9.75000015, 2.66999999, 1.35000001, 1.46000002, 0.36999998, 0.27 , 0.24999999, 0.15 , 2.67999997, 2.55999997, 2.72999996, 0.39999998, 0.39999998, 0.19999999, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ]]) What you expected to happen: the sum of zeros should be zero. If this cannot be achieved/expected because of precision issues, it should be documented. Anything else we need to know?: I discovered this behavior in my old environments, but I created a new ad hoc environment with the latest versions, and it does the same thing. Environment: INSTALLED VERSIONScommit: None python: 3.9.7 (default, Sep 16 2021, 08:50:36) [Clang 10.0.0 ] python-bits: 64 OS: Darwin OS-release: 17.7.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: None libnetcdf: None xarray: 0.19.0 pandas: 1.3.3 numpy: 1.21.2 scipy: None netCDF4: None pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: None nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.3.2 dask: None distributed: None matplotlib: None cartopy: None seaborn: None numbagg: None pint: None setuptools: 58.0.4 pip: 21.2.4 conda: None pytest: None IPython: 7.28.0 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5877/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
183713222 | MDU6SXNzdWUxODM3MTMyMjI= | 1050 | xarray.Dataset.var - xarray.DataArray.var - does it have ddof=1 parameter? | chiaral 8453445 | closed | 0 | 4 | 2016-10-18T15:03:53Z | 2022-03-12T08:17:48Z | 2022-03-12T08:17:48Z | CONTRIBUTOR | It is not clear from the description whether ddof = 1 is available and/or if it is set to 0. (https://docs.scipy.org/doc/numpy-1.6.0/reference/generated/numpy.var.html) for large samples, 1 or 0 don't make a lot of difference, but it would be good to know whether it uses N-1 or N. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1050/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
875696070 | MDU6SXNzdWU4NzU2OTYwNzA= | 5257 | Inconsistencies between 0.17.0 and 0.17.1.dev102+gf455e00f | chiaral 8453445 | closed | 0 | 3 | 2021-05-04T17:52:08Z | 2021-05-04T20:02:00Z | 2021-05-04T20:02:00Z | CONTRIBUTOR | Download file:
I work on https://staging.us-central1-b.gcp.pangeo.io/ xarray: 0.17.0 cfgrib: 0.9.9.0 and when I try:
it works. The keyword argument After installing the latest when I attempt the same loading:
I get ```python TypeError Traceback (most recent call last) <ipython-input-5-6673e5f2812b> in <module> ----> 1 ds = xr.open_dataset("acpcp_sfc_2000012900_c00.grib2", engine="cfgrib", backend_kwargs={"extra_coords": {"stepRange": "step"}}) /srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/backends/api.py in open_dataset(filename_or_obj, engine, chunks, cache, decode_cf, mask_and_scale, decode_times, decode_timedelta, use_cftime, concat_characters, decode_coords, drop_variables, backend_kwargs, args, *kwargs) 499 500 overwrite_encoded_chunks = kwargs.pop("overwrite_encoded_chunks", None) --> 501 backend_ds = backend.open_dataset( 502 filename_or_obj, 503 drop_variables=drop_variables, TypeError: open_dataset() got an unexpected keyword argument 'extra_coords' ``` What you expected to happen: I expect '0.17.1.dev102+gf455e00f' to work as '0.17.0' |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5257/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
783630055 | MDU6SXNzdWU3ODM2MzAwNTU= | 4793 | More advanced tutorial on how to manipulate facetgrid | chiaral 8453445 | open | 0 | 3 | 2021-01-11T19:17:12Z | 2021-01-11T22:37:16Z | CONTRIBUTOR | Is your feature request related to a problem? Please describe.
I have explored a bit the object returned by faceting a plot (usually identified like I have an example here which I was planning to add somewhere to the tutorial for plotting. Would this be of interest? or not since it makes use of i.e. matplotlib methods? This issue is also intended to call for people that might have been playing with obscure attributes/method/whatever stored in For example, in my notebook linked above, I add some axes to the side of the facetgrid to add a meridional average, and it used to take me a second to match the location of the added axes to the location of the axes in the faceted plot. But I figured that:
I am sure tons of people have come up with similar stuff - so it would be amazing to put it all together in one spot! Describe the solution you'd like If there is interest, I will open a PR with an example on how to manipulate faceted plots. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4793/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
183715595 | MDU6SXNzdWUxODM3MTU1OTU= | 1051 | to_netcdf Documentation | chiaral 8453445 | closed | 0 | 3 | 2016-10-18T15:12:07Z | 2019-02-24T23:25:40Z | 2019-02-24T23:25:40Z | CONTRIBUTOR | I found this SO thread reply very helpful when I had to create some netcdf files with many attributes. http://stackoverflow.com/questions/22933855/convert-csv-to-netcdf/28914767#28914767 I thought to bring it to your attention. The documentation on http://xarray.pydata.org/en/stable/io.html#netcdf could use a more detailed example and this is very clear. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1051/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
314239017 | MDU6SXNzdWUzMTQyMzkwMTc= | 2055 | Documentation on assign a value and vectorized indexing | chiaral 8453445 | closed | 0 | 10 | 2018-04-13T20:22:18Z | 2018-05-16T02:13:26Z | 2018-05-16T02:13:26Z | CONTRIBUTOR | I was trying to assign a value to a dataset and kept getting no error but also not getting what I wanted. I then was directed to the Warning at the end of the Assigning values with indexing and I realized I wasted a lot of time on something that is not possible. So I am suggesting a few improvements (some might be feasible, some might not): A) I am not sure if it is possible, but maybe add a proper error to such thing - try to assign values when using any of the indexing methods - would be great.
B) if A is not possible, maybe in the DataArray page you should repeat the Warning. In this second page, in fact, you state: "Select or assign values by integer location (like numpy) : x[:10] or by label (like pandas): x.loc['2014-01-01'] or x.sel(time='2014-01-01')." Which I think it's in contradiction, or at least it's not crystal clear.
C) you should add to the text of the Warning to use vectorized indexing, so people know how to fix the issue. ind_y = da.y=='c' da[ind_x, ind_y] =30 ``` E) If I am completely off in the solution that i used in the code above, then add an example that takes care of this. In your examples you use 0s and 1s, which is not what you want to do if you have multiple lat and lon and time coordinates that you want to use correctly. I hope I made some sense.. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2055/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
323345746 | MDExOlB1bGxSZXF1ZXN0MTg4MjI2NTMy | 2133 | DOC: Added text to Assign values with Indexing | chiaral 8453445 | closed | 0 | 1 | 2018-05-15T19:09:19Z | 2018-05-16T02:13:26Z | 2018-05-16T02:13:26Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/2133 |
Added examples to select and assign values to a DataArray using .loc() and xr.where() in the Assign values with indexing |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2133/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);