issues
2 rows where user = 8161792 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
| id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 656982083 | MDU6SXNzdWU2NTY5ODIwODM= | 4224 | wrong time encoding after padding | xzenggit 8161792 | open | 0 | 3 | 2020-07-15T00:46:53Z | 2022-04-29T17:39:17Z | NONE | What happened: If I open a netcdf with default settings (contain a daily time dimension) and then pad with hourly values, even the padded dataset shows hourly time values, the hourly values cannot be saved. I think this is due to the encoding, but I'm not sure how to fix it. What you expected to happen: I expected the final line of code give me ```python array(['2000-01-01T00:00:00.000000000', '2000-01-01T01:00:00.000000000','2000-01-01T02:00:00.000000000', '2000-01-01T03:00:00.000000000','2000-01-01T04:00:00.000000000'], dtype='datetime64[ns]')
array(['2000-01-01T00:00:00.000000000', '2000-01-01T00:00:00.000000000','2000-01-01T00:00:00.000000000', '2000-01-01T00:00:00.000000000','2000-01-01T00:00:00.000000000'], dtype='datetime64[ns]')``` Minimal Complete Verifiable Example: ```python import xarray as xr time = pd.date_range("2000-01-01", freq="1D", periods=365 ) ds = xr.Dataset({"foo": ("time", np.arange(365)), "time": time}) ds.to_netcdf('test5.nc') ds = xr.open_dataset('test5.nc') ds.time.encoding paddingds_hourly = ds.resample(time='1h').pad() ds_hourly.time.values[0:5] array(['2000-01-01T00:00:00.000000000', '2000-01-01T01:00:00.000000000','2000-01-01T02:00:00.000000000', '2000-01-01T03:00:00.000000000','2000-01-01T04:00:00.000000000'], dtype='datetime64[ns]')ds_hourly.to_netcdf('test6.nc') load the padded data fileds_hourly_load = xr.open_dataset('test6.nc') ds_hourly_load.time.values[0:5] array(['2000-01-01T00:00:00.000000000', '2000-01-01T00:00:00.000000000','2000-01-01T00:00:00.000000000', '2000-01-01T00:00:00.000000000','2000-01-01T00:00:00.000000000'], dtype='datetime64[ns]')``` Anything else we need to know?: Environment: xarray version: '0.15.1' Output of <tt>xr.show_versions()</tt> |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/4224/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray 13221727 | issue | ||||||||
| 668905666 | MDU6SXNzdWU2Njg5MDU2NjY= | 4291 | resample function gives 0s instead of NaNs | xzenggit 8161792 | closed | 0 | 3 | 2020-07-30T15:59:32Z | 2020-08-05T16:55:58Z | 2020-08-05T16:55:58Z | NONE | What happened:
When I use What you expected to happen: NaNs should be the correct answer. Minimal Complete Verifiable Example: ```python import xarray as xr dates = pd.date_range('20200101', '20200601', freq='h') data = np.linspace(0, 10, num=len(dates)) data[0:30*24] = np.nan da = xr.DataArray(data, coords=[dates], dims='time') da.plot() Instead of NaNs, the resampled time series in January 20202 give us 0s, which not right.da.resample(time='1d', skipna=True).sum(dim='time', skipna=True).plot() ``` Anything else we need to know?: Did I misunderstand something here? Thanks! Environment: xarray - '0.15.1' Output of <tt>xr.show_versions()</tt>xarray - '0.15.1' |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/4291/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] (
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[number] INTEGER,
[title] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[state] TEXT,
[locked] INTEGER,
[assignee] INTEGER REFERENCES [users]([id]),
[milestone] INTEGER REFERENCES [milestones]([id]),
[comments] INTEGER,
[created_at] TEXT,
[updated_at] TEXT,
[closed_at] TEXT,
[author_association] TEXT,
[active_lock_reason] TEXT,
[draft] INTEGER,
[pull_request] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[state_reason] TEXT,
[repo] INTEGER REFERENCES [repos]([id]),
[type] TEXT
);
CREATE INDEX [idx_issues_repo]
ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
ON [issues] ([user]);