issues
10 rows where user = 743508 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
163267018 | MDU6SXNzdWUxNjMyNjcwMTg= | 893 | 'Warm start' for open_mfdataset? | mangecoeur 743508 | closed | 0 | 3 | 2016-06-30T21:05:46Z | 2023-05-29T13:35:32Z | 2023-05-29T13:35:32Z | CONTRIBUTOR | I'm using xarray in ipython to do interactive/exploratory analysis on large multi-file datasets. To avoid having too many files open, I'm wrapping my file-open code in a It would be good to have some kind of 'warm start' or caching mechanism to make it easier to re-open multifile datasets without having to re-scan the input files, but equally without having to keep the dataset open which keeps all the file handles open (I've hit the OS max file limit because of this). Not sure what API would suit this - since it while being a useful usecase it's also a bit wierd. Something like |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/893/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1445486904 | I_kwDOAMm_X85WKGE4 | 7280 | Support for Scipy Sparse Arrays | mangecoeur 743508 | open | 0 | 4 | 2022-11-11T13:35:51Z | 2022-11-11T16:39:53Z | CONTRIBUTOR | What happened?Now that Scipy is moving to support sparse NDarrays, we would expect that Xarray should work with them as any other array like data. What did you expect to happen?Doesn't work. It seems that why trying to use a scipy sparse array as the data, Xarray wraps the the sparse array in a 0-D dense array. (there are likely more issues after this but this was the first hurdle) With sparse array s:
Minimal Complete Verifiable Example```Python import numpy as np import xarray as xr from scipy.sparse import coo_array row = np.array([0, 3, 1, 0]) col = np.array([0, 3, 1, 2]) data = np.array([4, 5.4, 7, 9.2]) s= coo_array((data, (row, col)), shape=(4, 4)) da = xr.DataArray(s) print(da.repr_html()) ``` MVCE confirmation
Relevant log output```PythonAttributeError Traceback (most recent call last) Input In [4], in <cell line: 13>() 11 s= coo_array((data, (row, col)), shape=(4, 4)) 12 da = xr.DataArray(s) ---> 13 print(da.repr_html()) File ~/Scratch/.conda/envs/tessa-1/lib/python3.10/site-packages/xarray/core/common.py:167, in AbstractArray.repr_html(self) 165 if OPTIONS["display_style"] == "text": 166 return f" {escape(repr(self))}" --> 167 return formatting_html.array_repr(self) File ~/Scratch/.conda/envs/tessa-1/lib/python3.10/site-packages/xarray/core/formatting_html.py:311, in array_repr(arr) 303 arr_name = f"'{arr.name}'" if getattr(arr, "name", None) else "" 305 header_components = [ 306 f" {obj_type} ",
307 f"{arr_name} ",
308 format_dims(dims, indexed_dims),
309 ]
--> 311 sections = [array_section(arr)]
313 if hasattr(arr, "coords"):
314 sections.append(coord_section(arr.coords))
File ~/Scratch/.conda/envs/tessa-1/lib/python3.10/site-packages/xarray/core/formatting_html.py:219, in array_section(obj) 213 collapsed = ( 214 "checked" 215 if _get_boolean_with_default("display_expand_data", default=True) 216 else "" 217 ) 218 variable = getattr(obj, "variable", obj) --> 219 preview = escape(inline_variable_array_repr(variable, max_width=70)) 220 data_repr = short_data_repr_html(obj) 221 data_icon = _icon("icon-database") File ~/Scratch/.conda/envs/tessa-1/lib/python3.10/site-packages/xarray/core/formatting.py:274, in inline_variable_array_repr(var, max_width) 272 return var.data._repr_inline(max_width) 273 if var._in_memory: --> 274 return format_array_flat(var, max_width) 275 dask_array_type = array_type("dask") 276 if isinstance(var._data, dask_array_type): File ~/Scratch/.conda/envs/tessa-1/lib/python3.10/site-packages/xarray/core/formatting.py:191, in format_array_flat(array, max_width) 188 # every item will take up at least two characters, but we always want to 189 # print at least first and last items 190 max_possibly_relevant = min(max(array.size, 1), max(math.ceil(max_width / 2.0), 2)) --> 191 relevant_front_items = format_items( 192 first_n_items(array, (max_possibly_relevant + 1) // 2) 193 ) 194 relevant_back_items = format_items(last_n_items(array, max_possibly_relevant // 2)) 195 # interleave relevant front and back items: 196 # [a, b, c] and [y, z] -> [a, z, b, y, c] File ~/Scratch/.conda/envs/tessa-1/lib/python3.10/site-packages/xarray/core/formatting.py:180, in format_items(x) 177 elif np.logical_not(time_needed).all(): 178 timedelta_format = "date" --> 180 formatted = [format_item(xi, timedelta_format) for xi in x] 181 return formatted File ~/Scratch/.conda/envs/tessa-1/lib/python3.10/site-packages/xarray/core/formatting.py:180, in <listcomp>(.0) 177 elif np.logical_not(time_needed).all(): 178 timedelta_format = "date" --> 180 formatted = [format_item(xi, timedelta_format) for xi in x] 181 return formatted File ~/Scratch/.conda/envs/tessa-1/lib/python3.10/site-packages/xarray/core/formatting.py:161, in format_item(x, timedelta_format, quote_strings) 159 return repr(x) if quote_strings else x 160 elif hasattr(x, "dtype") and np.issubdtype(x.dtype, np.floating): --> 161 return f"{x.item():.4}" 162 else: 163 return str(x) File ~/Scratch/.conda/envs/tessa-1/lib/python3.10/site-packages/scipy/sparse/_base.py:771, in spmatrix.getattr(self, attr) 769 return self.getnnz() 770 else: --> 771 raise AttributeError(attr + " not found") AttributeError: item not found ``` Anything else we need to know?No response Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.6 | packaged by conda-forge | (main, Aug 22 2022, 20:35:26) [GCC 10.4.0]
python-bits: 64
OS: Linux
OS-release: 5.13.0-41-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.8.1
xarray: 2022.11.0
pandas: 1.4.3
numpy: 1.22.4
scipy: 1.9.0
netCDF4: 1.6.0
pydap: None
h5netcdf: None
h5py: 3.7.0
Nio: None
zarr: 2.12.0
cftime: 1.6.1
nc_time_axis: None
PseudoNetCDF: None
rasterio: 1.3.2
cfgrib: 0.9.10.1
iris: None
bottleneck: 1.3.5
dask: 2022.8.1
distributed: 2022.8.1
matplotlib: 3.5.3
cartopy: 0.20.3
seaborn: 0.11.2
numbagg: None
fsspec: 2022.7.1
cupy: None
pint: 0.19.2
sparse: 0.13.0
flox: None
numpy_groupies: None
setuptools: 65.2.0
pip: 22.2.2
conda: 4.14.0
pytest: 7.1.2
IPython: 8.4.0
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7280/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
561539035 | MDU6SXNzdWU1NjE1MzkwMzU= | 3761 | to_dataframe fails if dataarray has dimension 1 | mangecoeur 743508 | open | 0 | 2 | 2020-02-07T10:05:47Z | 2020-02-07T16:37:05Z | CONTRIBUTOR | The MCVE Code Sample```python Your code herex = np.arange(10) y = np.arange(10) data = np.zeros((len(x), len(y))) da = xr.DataArray(data, coords=[x, y], dims=['x', 'y']) da.sel(x=1,y=1).to_dataframe(name='test') ``` Expected OutputExpect a dataframe with one row Problem DescriptionThis happened when selecting a single value out of a gridded dataset - in cases where there was only one value output the to_dataframe failed. Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3761/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
231061878 | MDU6SXNzdWUyMzEwNjE4Nzg= | 1424 | Huge memory use when using FacetGrid | mangecoeur 743508 | closed | 0 | 6 | 2017-05-24T14:35:16Z | 2019-06-29T02:58:33Z | 2019-06-29T02:58:33Z | CONTRIBUTOR | When plotting a time series of maps using faceting, my memory use jumps by over 3x, from about 4GB to 14GB. Using macOS, Python 3.6, xarray 0.9.5, jupyter notebook. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1424/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
161068483 | MDU6SXNzdWUxNjEwNjg0ODM= | 887 | Perf: use Scipy engine by default for netcdf3? | mangecoeur 743508 | closed | 0 | 2 | 2016-06-19T11:27:56Z | 2019-02-26T12:51:17Z | 2019-02-26T12:51:17Z | CONTRIBUTOR | Not really a bug, but I'm finding that the scipy backend is considerably faster than the netCDF backend for netCDF 3 files (using dataset: http://rda.ucar.edu/datasets/ds093.1/). Using Anaconda python with MKL. Not sure if this is always faster, but if it is perhaps xarray should default to scipy backend for netCDF 3 files? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/887/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
238990919 | MDU6SXNzdWUyMzg5OTA5MTk= | 1467 | CF conventions for time doesn't support years | mangecoeur 743508 | open | 0 | 10 | 2017-06-27T21:38:32Z | 2019-02-20T21:25:01Z | CONTRIBUTOR | CF conventions code supports: |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1467/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
157886730 | MDU6SXNzdWUxNTc4ODY3MzA= | 864 | TypeError: invalid type promotion when reading multi-file dataset | mangecoeur 743508 | closed | 0 | 3 | 2016-06-01T11:44:49Z | 2019-01-27T21:54:49Z | 2019-01-27T21:54:49Z | CONTRIBUTOR | I'm trying to select data from a collection of weather files. Xarray opens the multifile dataset perfectly, but when I try the following selection: ``` python cfsr_new = xr.open_mfdataset('*.grb2.nc') lon_sel = np.array(cfsr_new.lon[np.array([3, 4, 8])]) lat_sel = np.array(cfsr_new.lat[np.array([2, 3, 4])]) time_sel = cfsr_new.time[100:200] selection = cfsr_new.sel(lon=lon_sel, lat=lat_sel, time=time_sel) selection.to_array() ``` I get: ```TypeError Traceback (most recent call last) <ipython-input-38-3f04c6458da2> in <module>() ----> 1 selection.to_array() /Users/<user>/anaconda/lib/python3.5/site-packages/xarray/core/dataset.py in to_array(self, dim, name) 1847 data_vars = [self.variables[k] for k in self.data_vars] 1848 broadcast_vars = broadcast_variables(*data_vars) -> 1849 data = ops.stack([b.data for b in broadcast_vars], axis=0) 1850 1851 coords = dict(self.coords) /Users/<user>//anaconda/lib/python3.5/site-packages/xarray/core/ops.py in f(args, kwargs) 65 else: 66 module = eager_module ---> 67 return getattr(module, name)(args, kwargs) 68 else: 69 def f(data, *args, kwargs): /Users/<user>//anaconda/lib/python3.5/site-packages/dask/array/core.py in stack(seq, axis) 1754 1755 if all(a._dtype is not None for a in seq): -> 1756 dt = reduce(np.promote_types, [a._dtype for a in seq]) 1757 else: 1758 dt = None /Users/<user>//anaconda/lib/python3.5/site-packages/toolz/functoolz.py in call(self, args, kwargs) 217 def call(self, args, kwargs): 218 try: --> 219 return self._partial(*args, kwargs) 220 except TypeError: 221 # If there was a genuine TypeError TypeError: invalid type promotion ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/864/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
142675134 | MDU6SXNzdWUxNDI2NzUxMzQ= | 799 | Support for pathlib.Path | mangecoeur 743508 | closed | 0 | 2 | 2016-03-22T14:53:48Z | 2017-09-01T15:31:52Z | 2017-09-01T15:31:52Z | CONTRIBUTOR |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/799/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
195050684 | MDU6SXNzdWUxOTUwNTA2ODQ= | 1161 | Generated Dask graph is huge - performance issue? | mangecoeur 743508 | closed | 0 | 8 | 2016-12-12T18:35:12Z | 2017-01-23T20:21:14Z | 2017-01-23T20:21:14Z | CONTRIBUTOR | I've been trying to get around some performance issues when subsetting a set of netCDF files opend with The code that generates this select looks roughly like: ```python paths = WEATHER_MET['latlon'].glob('_resampled.nc') dataset = xr.open_mfdataset([str(p) for p in paths]) selection = dataset.sel(time=time_sel).sel_points(method='nearest', tolerance=0.1, lon=lon, lat=lat) selection = weights ``` and the graph for one variable in the select (the irradiance value) looks like this: |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1161/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
195125296 | MDExOlB1bGxSZXF1ZXN0OTc2NjMxMTg= | 1162 | #1161 WIP to vectorize isel_points | mangecoeur 743508 | closed | 0 | 15 | 2016-12-13T00:19:46Z | 2017-01-23T20:20:51Z | 2017-01-23T20:20:47Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/1162 | WIP to use dask vindex to point based selection |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1162/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);