issues
3 rows where user = 60435591 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1647883619 | I_kwDOAMm_X85iOLVj | 7701 | Recently introduced different behaviour of da.interp() when using floats vs DataArrays with new dim | veenstrajelmer 60435591 | closed | 0 | 6 | 2023-03-30T15:47:53Z | 2023-10-04T18:08:51Z | 2023-10-04T18:07:08Z | CONTRIBUTOR | What happened?In recent xarray versions, What did you expect to happen?Equal interpolation results with both methods since the input values are equal. Minimal Complete Verifiable Example```Python import numpy as np import xarray as xr ds = xr.Dataset() so_np = np.array([[[35.819576, 35.82568 , 35.82873 ], [35.819576, 35.824154, 35.831783], [35.822628, 35.824154, 35.82873 ]],
ds['so'] = xr.DataArray(so_np,dims=('depth','latitude','longitude')) ds['longitude'] = xr.DataArray([-9.6, -9.5, -9.4], dims=('longitude')) ds['latitude'] = xr.DataArray([42.9, 43.0, 43.1], dims=('latitude')) x_xr = xr.DataArray([-9.5],dims=('plipoints')) y_xr = xr.DataArray([43],dims=('plipoints')) interp_with_floats = ds.interp(longitude=x_xr[0], latitude=y_xr[0], method='linear').so #selecting one value from the da drops the new plipoints dimension interp_with_da_existing = ds.interp(longitude=x_xr.values, latitude=y_xr.values, method='linear').so.isel(longitude=0,latitude=0) #using the DataArray values keeps lat/lon dimenions, gives the same interp result interp_with_da_newdim = ds.interp(longitude=x_xr, latitude=y_xr, method='linear').so.isel(plipoints=0) #using the DataArray introduces a plipoints dimension, which gives different interp result print(interp_with_floats.to_numpy()) print(interp_with_da_existing.to_numpy()) print(interp_with_da_newdim.to_numpy()) print(xr.version) assert (interp_with_floats.isnull()==interp_with_da_existing.isnull()).all() #success assert (interp_with_floats.isnull()==interp_with_da_newdim.isnull()).all() #fails with scipy>=1.10.0 ``` MVCE confirmation
Relevant log outputNo response Anything else we need to know?No response Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.8.13 | packaged by conda-forge | (default, Mar 25 2022, 05:59:45) [MSC v.1929 64 bit (AMD64)]
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 85 Stepping 0, GenuineIntel
byteorder: little
LC_ALL: None
LANG: en
LOCALE: ('Dutch_Netherlands', '1252')
libhdf5: 1.12.2
libnetcdf: 4.8.1
xarray: 2023.1.0
pandas: 1.5.3
numpy: 1.23.5
scipy: 1.10.1
netCDF4: 1.6.2
pydap: installed
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: 1.6.2
nc_time_axis: None
PseudoNetCDF: None
rasterio: 1.3.3
cfgrib: None
iris: None
bottleneck: 1.3.6
dask: 2022.9.2
distributed: 2022.9.2
matplotlib: 3.6.1
cartopy: 0.21.0
seaborn: 0.10.1
numbagg: None
fsspec: 2022.10.0
cupy: None
pint: None
sparse: None
flox: None
numpy_groupies: None
setuptools: 65.5.0
pip: 23.0.1
conda: None
pytest: 7.1.3
mypy: None
IPython: 7.33.0
sphinx: 5.3.0
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7701/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1597118095 | PR_kwDOAMm_X85KntAL | 7553 | boundarynorm fix | veenstrajelmer 60435591 | closed | 0 | 3 | 2023-02-23T15:57:17Z | 2023-03-28T09:17:58Z | 2023-03-28T09:17:58Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/7553 | { "url": "https://api.github.com/repos/pydata/xarray/issues/7553/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||||
1395962467 | I_kwDOAMm_X85TNLJj | 7121 | Add rename_variables argument to xr.open_dataset() to workaround vars with same names as dims | veenstrajelmer 60435591 | closed | 0 | 2 | 2022-10-04T09:43:56Z | 2022-10-05T10:00:12Z | 2022-10-05T10:00:12Z | CONTRIBUTOR | Is your feature request related to a problem?Yes, xarray not being able to open netcdf files with non-unique variable/dimension names is an issue for many people. Me personally have come across several files where this is an issue. As a not so nice workaround I use This suggestion was also made by others in other issues but I cannot find a feature request for it: by @jthielen in https://github.com/pydata/xarray/issues/2233#issuecomment-782188310 by @markelg in https://github.com/pydata/xarray/issues/2368#issuecomment-415402600 Describe the solution you'd like
Describe alternatives you've consideredNo response Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7121/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);