issues
4 rows where user = 5659125 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, author_association, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1925758025 | I_kwDOAMm_X85yyLxJ | 8271 | time encoding fails for subdaily frequencies and `days since` | larsbuntemeyer 5659125 | closed | 0 | 3 | 2023-10-04T09:12:59Z | 2023-10-06T14:08:53Z | 2023-10-06T14:08:53Z | NONE | What happened?This is my example, that doesn't work since ```python import numpy as np import pandas as pd import xarray as xr time = pd.date_range("1970-01-01", "1970-01-31", freq="6h") ds = xr.Dataset(coords=dict(time=time)) units = "days since 1960-01-01 00:00:00" calendar = "gregorian" encoding = dict(time=dict(units=units, calendar=calendar, dtype=np.dtype("float64"))) ds.to_netcdf("test.nc", encoding=encoding) ! ncdump -v time test.nc ``` This gives the following output: ``` netcdf test { dimensions: time = 121 ; variables: double time(time) ; time:_FillValue = NaN ; time:units = "days since 1960-01-01" ; time:calendar = "gregorian" ; data: time = 3653, 3653, 3653, 3653, 3654, 3654, 3654, 3654, 3655, 3655, 3655, 3655, 3656, 3656, 3656, 3656, 3657, 3657, 3657, 3657, 3658, 3658, 3658, 3658, 3659, 3659, 3659, 3659, 3660, 3660, 3660, 3660, 3661, 3661, 3661, 3661, 3662, 3662, 3662, 3662, 3663, 3663, 3663, 3663, 3664, 3664, 3664, 3664, 3665, 3665, 3665, 3665, 3666, 3666, 3666, 3666, 3667, 3667, 3667, 3667, 3668, 3668, 3668, 3668, 3669, 3669, 3669, 3669, 3670, 3670, 3670, 3670, 3671, 3671, 3671, 3671, 3672, 3672, 3672, 3672, 3673, 3673, 3673, 3673, 3674, 3674, 3674, 3674, 3675, 3675, 3675, 3675, 3676, 3676, 3676, 3676, 3677, 3677, 3677, 3677, 3678, 3678, 3678, 3678, 3679, 3679, 3679, 3679, 3680, 3680, 3680, 3680, 3681, 3681, 3681, 3681, 3682, 3682, 3682, 3682, 3683 ; } ``` It seems like the subdaily fraction is truncated. Note, that this does not happend, if i set the units to the start of the time range, e.g., units = "days since 1970-01-01 00:00:00". This results correctly in ``` netcdf test { dimensions: time = 121 ; variables: double time(time) ; time:_FillValue = NaN ; time:units = "days since 1970-01-01" ; time:calendar = "gregorian" ; data: time = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 4.25, 4.5, 4.75, 5, 5.25, 5.5, 5.75, 6, 6.25, 6.5, 6.75, 7, 7.25, 7.5, 7.75, 8, 8.25, 8.5, 8.75, 9, 9.25, 9.5, 9.75, 10, 10.25, 10.5, 10.75, 11, 11.25, 11.5, 11.75, 12, 12.25, 12.5, 12.75, 13, 13.25, 13.5, 13.75, 14, 14.25, 14.5, 14.75, 15, 15.25, 15.5, 15.75, 16, 16.25, 16.5, 16.75, 17, 17.25, 17.5, 17.75, 18, 18.25, 18.5, 18.75, 19, 19.25, 19.5, 19.75, 20, 20.25, 20.5, 20.75, 21, 21.25, 21.5, 21.75, 22, 22.25, 22.5, 22.75, 23, 23.25, 23.5, 23.75, 24, 24.25, 24.5, 24.75, 25, 25.25, 25.5, 25.75, 26, 26.25, 26.5, 26.75, 27, 27.25, 27.5, 27.75, 28, 28.25, 28.5, 28.75, 29, 29.25, 29.5, 29.75, 30 ; } ``` What did you expect to happen?I expect subdaily frequencies to be encoded correctly also if the units startdate is different from the startdate of the time axis, e.g. ``` netcdf test { dimensions: time = 121 ; variables: double time(time) ; time:_FillValue = NaN ; time:units = "days since 1960-01-01" ; time:calendar = "gregorian" ; data: time = 3653, 3653.25, 3653.5, 3653.75, 3654, 3654.25, 3654.5, 3654.75, 3655, 3655.25, 3655.5, 3655.75, 3656, 3656.25, 3656.5, 3656.75, 3657, 3657.25, 3657.5, 3657.75, 3658, 3658.25, 3658.5, 3658.75, 3659, 3659.25, 3659.5, 3659.75, 3660, 3660.25, 3660.5, 3660.75, 3661, 3661.25, 3661.5, 3661.75, 3662, 3662.25, 3662.5, 3662.75, 3663, 3663.25, 3663.5, 3663.75, 3664, 3664.25, 3664.5, 3664.75, 3665, 3665.25, 3665.5, 3665.75, 3666, 3666.25, 3666.5, 3666.75, 3667, 3667.25, 3667.5, 3667.75, 3668, 3668.25, 3668.5, 3668.75, 3669, 3669.25, 3669.5, 3669.75, 3670, 3670.25, 3670.5, 3670.75, 3671, 3671.25, 3671.5, 3671.75, 3672, 3672.25, 3672.5, 3672.75, 3673, 3673.25, 3673.5, 3673.75, 3674, 3674.25, 3674.5, 3674.75, 3675, 3675.25, 3675.5, 3675.75, 3676, 3676.25, 3676.5, 3676.75, 3677, 3677.25, 3677.5, 3677.75, 3678, 3678.25, 3678.5, 3678.75, 3679, 3679.25, 3679.5, 3679.75, 3680, 3680.25, 3680.5, 3680.75, 3681, 3681.25, 3681.5, 3681.75, 3682, 3682.25, 3682.5, 3682.75, 3683 ; } ``` Minimal Complete Verifiable Example```Python import numpy as np import pandas as pd import xarray as xr time = pd.date_range("1970-01-01", "1970-01-31", freq="6h") ds = xr.Dataset(coords=dict(time=time)) units = "days since 1960-01-01 00:00:00" calendar = "gregorian" encoding = dict(time=dict(units=units, calendar=calendar, dtype=np.dtype("float64"))) ds.to_netcdf("test.nc", encoding=encoding) ! ncdump -v time test.nc ``` MVCE confirmation
Relevant log outputNo response Anything else we need to know?This is still an issue in the current main. Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.12 | packaged by conda-forge | (main, Jun 23 2023, 22:39:40) [Clang 15.0.7 ]
python-bits: 64
OS: Darwin
OS-release: 22.6.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: None
LOCALE: (None, 'UTF-8')
libhdf5: 1.14.2
libnetcdf: 4.9.2
xarray: 2023.9.1.dev12+gd5f17858
pandas: 2.1.1
numpy: 1.24.4
scipy: 1.11.3
netCDF4: 1.6.4
pydap: installed
h5netcdf: 1.2.0
h5py: 3.9.0
Nio: None
zarr: 2.16.1
cftime: 1.6.2
nc_time_axis: 1.4.1
PseudoNetCDF: 3.2.2
iris: 3.7.0
bottleneck: 1.3.7
dask: 2023.9.3
distributed: 2023.9.3
matplotlib: 3.8.0
cartopy: 0.22.0
seaborn: 0.13.0
numbagg: 0.2.2
fsspec: 2023.9.2
cupy: None
pint: 0.20.1
sparse: 0.14.0
flox: 0.7.2
numpy_groupies: 0.10.2
setuptools: 68.2.2
pip: 23.2.1
conda: None
pytest: 7.4.2
mypy: None
IPython: 8.16.1
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8271/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1507817863 | PR_kwDOAMm_X85GCbr9 | 7399 | fix convert_calendar on static variables in Dataset | larsbuntemeyer 5659125 | open | 0 | 3 | 2022-12-22T12:44:34Z | 2023-10-04T08:10:36Z | FIRST_TIME_CONTRIBUTOR | 0 | pydata/xarray/pulls/7399 |
This PR implements the workaround suggested in #6879. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7399/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||||
1498255931 | I_kwDOAMm_X85ZTZI7 | 7381 | Document cftime arithmetic limitations | larsbuntemeyer 5659125 | open | 0 | 3 | 2022-12-15T11:24:04Z | 2023-07-17T09:34:12Z | NONE | What is your issue?Hey all, i have quick use case where i am unsure if that's related to xarray. I just want to do simple arithmetics with a cftime time axis, e.g.
UFuncTypeError Traceback (most recent call last) Input In [72], in <cell line: 1>() ----> 1 time[1:] + 0.5 * time.diff('time') File /work/ch0636/g300046/conda_envs/pyremo-dev/lib/python3.9/site-packages/xarray/core/_typed_ops.py:206, in DataArrayOpsMixin.add(self, other) 205 def add(self, other): --> 206 return self._binary_op(other, operator.add) File /work/ch0636/g300046/conda_envs/pyremo-dev/lib/python3.9/site-packages/xarray/core/dataarray.py:3530, in DataArray._binary_op(self, other, f, reflexive) 3526 other_variable = getattr(other, "variable", other) 3527 other_coords = getattr(other, "coords", None) 3529 variable = ( -> 3530 f(self.variable, other_variable) 3531 if not reflexive 3532 else f(other_variable, self.variable) 3533 ) 3534 coords, indexes = self.coords._merge_raw(other_coords, reflexive) 3535 name = self._result_name(other) File /work/ch0636/g300046/conda_envs/pyremo-dev/lib/python3.9/site-packages/xarray/core/_typed_ops.py:396, in VariableOpsMixin.add(self, other) 395 def add(self, other): --> 396 return self._binary_op(other, operator.add) File /work/ch0636/g300046/conda_envs/pyremo-dev/lib/python3.9/site-packages/xarray/core/variable.py:2519, in Variable._binary_op(self, other, f, reflexive) 2516 attrs = self._attrs if keep_attrs else None 2517 with np.errstate(all="ignore"): 2518 new_data = ( -> 2519 f(self_data, other_data) if not reflexive else f(other_data, self_data) 2520 ) 2521 result = Variable(dims, new_data, attrs=attrs) 2522 return result UFuncTypeError: ufunc 'add' cannot use operands with types dtype('O') and dtype('<m8[ns]')
i get the expected result. I am not sure what to expect from xarray and if this might be an issue of cftime (e.g., implement differentiation with |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7381/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1507705136 | I_kwDOAMm_X85Z3cEw | 7398 | convert_calendar adds time coordinate to static variables | larsbuntemeyer 5659125 | open | 0 | 1 | 2022-12-22T11:27:11Z | 2023-01-15T15:51:21Z | NONE | What is your issue?I just recognized that ```python import numpy as np import pandas as pd import xarray as xr np.random.seed(0) temperature = 15 + 8 * np.random.randn(2, 2, 3) precipitation = 10 * np.random.rand(2, 2, 3) orog = 0 + 100 * np.random.randn(2, 2) lon = [[-99.83, -99.32], [-99.79, -99.23]] lat = [[42.25, 42.21], [42.63, 42.59]] time = pd.date_range("2014-09-06", periods=3) reference_time = pd.Timestamp("2014-09-05") ds = xr.Dataset(
data_vars=dict(
temperature=(["x", "y", "time"], temperature),
precipitation=(["x", "y", "time"], precipitation),
orog = (["x", "y"], orog)
),
coords=dict(
lon=(["x", "y"], lon),
lat=(["x", "y"], lat),
time=time,
reference_time=reference_time,
),
attrs=dict(description="Weather related data."),
)
ds
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7398/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);