issues
1 row where user = 56541075 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
924676925 | MDU6SXNzdWU5MjQ2NzY5MjU= | 5490 | Nan/ changed values in output when only reading data, saving and reading again | lthUniBonn 56541075 | closed | 0 | 9 | 2021-06-18T08:35:09Z | 2023-09-13T13:38:33Z | 2023-09-13T13:38:32Z | NONE | What happened: When combining monthly ERA5 data and saving it individually for single locations, different values/nan values appear when reading the single location file back in. What you expected to happen: Both should be the same. This works, e.g. when only one month is read. Minimal Complete Verifiable Example: ```python import xarray as xr #using version 0.18.2 import numpy as np import dask only as many threads as requested CPUs | only one to be requested, more threads don't seem to be useddask.config.set(scheduler='synchronous') # this is used only because of the Cluster I work on, but keeping it here in case it is relevant model_level_file_name_format = "{:d}europe{:d}_130_131_132_133_135.nc" ml_files = [model_level_file_name_format.format(2012, 9), model_level_file_name_format.format(2012, 10)] ds = xr.open_mfdataset(ml_files, decode_times=True) Select single location datalons = ds['longitude'].values lats = ds['latitude'].values i_lat, i_lon = 27,30 ds_loc = ds.sel(latitude=lats[i_lat], longitude=lons[i_lon]) Save to fileds_loc.to_netcdf('europe_i_lat_{i_lat}i_lon{i_lon}.nc'.format(i_lat=i_lat, i_lon=i_lon)) Read in againds_loc_1 = xr.open_dataset('europe_i_lat_{i_lat}i_lon{i_lon}.nc'.format(i_lat=i_lat, i_lon=i_lon), decode_times=True) print('Test all q values same: ', np.all(ds_loc.q.values == ds_loc_1.q.values)) ``` Anything else we need to know?: I tested this using these two months - many times saving the output works, or the values are slightly different (in the 6th digit). Using a larger timespan (2010-2012) even nan values appear. This issue is not clearly restricted to the q variable, I've not yet found the pattern. I've included a more detailed assessment (output, data, code) - only one month: no discrepancies - two months: discrepancies (in the second month) - 2010-2013: discrepancies and nan values at https://uni-bonn.sciebo.de/s/OLHhid8zJg65IFB I'm not sure where the issue might come from, but as the data is read in correctly at first, it does not seem to be on that side - which would then only leave the process of writing the netcdf output in xarray. I've tested this for a few years and for two months I always get the result, that not all q values are the same. I'm not sure where the problem might be, so I'm not sure where to start for a more minimal example. Hope this is ok. Cheers, Lavinia Environment: INSTALLED VERSIONS commit: None python: 3.9.4 | packaged by conda-forge | (default, May 10 2021, 22:13:33) [GCC 9.3.0] python-bits: 64 OS: Linux OS-release: 3.10.0-1160.25.1.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.utf8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.10.6 libnetcdf: 4.8.0 xarray: 0.18.2 pandas: 1.2.4 numpy: 1.20.3 scipy: 1.6.3 netCDF4: 1.5.6 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.5.0 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: 2021.06.0 distributed: 2021.06.0 matplotlib: 3.4.2 cartopy: None seaborn: None numbagg: None pint: None setuptools: 49.6.0.post20210108 pip: 21.1.2 conda: None pytest: None IPython: None sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5490/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);