issues
5 rows where user = 5049737 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, closed_at, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
123923598 | MDU6SXNzdWUxMjM5MjM1OTg= | 683 | Store xray.Dataset to MongoDB | femtotrader 5049737 | closed | 0 | 7 | 2015-12-26T10:33:06Z | 2020-12-07T01:07:20Z | 2020-12-07T01:07:20Z | MEMBER | Hello, it will be nice if xray Datasets could be stored easily to MongoDB. Maybe Monary (not Pymongo) should be considered https://monary.readthedocs.org/ Kind regards |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/683/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
109649145 | MDU6SXNzdWUxMDk2NDkxNDU= | 607 | odo support | femtotrader 5049737 | closed | 0 | 2 | 2015-10-03T22:27:12Z | 2019-01-15T20:15:22Z | 2019-01-15T20:15:22Z | MEMBER | Hello, I'm totally new to xray. I wonder if xray have odo support http://odo.readthedocs.org/ Kind regards |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/607/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
123982760 | MDExOlB1bGxSZXF1ZXN0NTQ2MTg5MTM= | 685 | DataArray.to_masked_array always returns array | femtotrader 5049737 | closed | 0 | 3 | 2015-12-27T15:08:46Z | 2015-12-28T02:50:50Z | 2015-12-27T19:40:02Z | MEMBER | 0 | pydata/xarray/pulls/685 | Should fix https://github.com/xray/xray/issues/684 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/685/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
123983561 | MDU6SXNzdWUxMjM5ODM1NjE= | 686 | sum of sum | femtotrader 5049737 | closed | 0 | 2 | 2015-12-27T15:34:31Z | 2015-12-27T20:00:05Z | 2015-12-27T20:00:05Z | MEMBER | Hello, sum of sum behave differently between Pandas and xray. I don't if that's an issue or a feature. ``` In [644]: df0=pd.DataFrame([[1,2,3],[4,5,6]]) In [645]: df0.sum() Out[645]: 0 5 1 7 2 9 dtype: int64 In [646]: df0.sum().sum() Out[646]: 21 In [647]: ds0=xray.Dataset.from_dataframe(df0) In [648]: ds0 Out[648]: <xray.Dataset> Dimensions: (index: 2) Coordinates: * index (index) int64 0 1 Data variables: 0 (index) int64 1 4 1 (index) int64 2 5 2 (index) int64 3 6 In [649]: ds0.sum().sum() Out[649]: <xray.Dataset> Dimensions: () Coordinates: empty Data variables: 0 int64 5 1 int64 7 2 int64 9 In [650]: ds0.sum() Out[650]: <xray.Dataset> Dimensions: () Coordinates: empty Data variables: 0 int64 5 1 int64 7 2 int64 9 In [651]: ds0.sum().sum() Out[651]: <xray.Dataset> Dimensions: () Coordinates: empty Data variables: 0 int64 5 1 int64 7 2 int64 9 ``` Kind regards |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/686/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
123971294 | MDU6SXNzdWUxMjM5NzEyOTQ= | 684 | to_masked_array should have an option to always return array | femtotrader 5049737 | closed | 0 | 1 | 2015-12-27T10:15:59Z | 2015-12-27T19:40:02Z | 2015-12-27T19:40:02Z | MEMBER | Hello, I'm working with Monary and xray and faced a problem because ``` In [1]: ma.masked_array(df['Bid'].values, df['Bid'].isnull()) Out[1]: masked_array(data = [0.81 0.88805 0.8880899999999999 ..., 0.87531 0.87531 0.87531], mask = [False False False ..., False False False], fill_value = 1e+20) In [2]: ds.Bid.to_masked_array() Out[2]: masked_array(data = [ 0.81 0.88805 0.88809 ..., 0.87531 0.87531 0.87531], mask = False, fill_value = 1e+20) ``` So we have
instead of
It will be nice if a parameter could be passed to always return array. Here is my code With sample data from https://drive.google.com/file/d/0B8iUtWjZOTqla3ZZTC1FS0pkZXc/view?usp=sharing
It raises ``` //anaconda/lib/python3.4/site-packages/monary/monary.py in insert(self, db, coll, params, write_concern) 763 for i, param in enumerate(params): 764 data_p = param.array.data.ctypes.data_as(ctypes.c_void_p) --> 765 mask_p = param.array.mask.ctypes.data_as(ctypes.c_void_p) 766 767 if cmonary.monary_set_column_item( AttributeError: 'numpy.bool_' object has no attribute 'ctypes' ``` see
An other option could be to fix this on Monary side https://bitbucket.org/djcbeach/monary/issues/22/insert-doesnt-work-correctly-when-mask-is Kind regards |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/684/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);